55 research outputs found

    Predictive algorithm for run-in value of warp knitting based on weave matrix

    Get PDF
    To predict the run-in values of single-needle-bar warp-knitted fabrics, three-dimensional weave matrixes have been established by considering main parameters of shogging movement, take-up density and total bar number. Length of a stitch has been deduced from the parameters in weave matrixes, and a new predictive algorithm model is developed. Moreover, to validate the accuracy of the proposed predictive algorithm, 30 samples with different parameters are knitted on HKS4-EL warp-knitting machine, and the predicted run-in values and measured run-in values of the samples are compared. It can be deduced from the comparison that the predictive algorithm model can provide high prediction accuracy with a relative error of < 4.26%

    Application of Knitting Structure Textiles in Medical Areas

    No full text
    There are many kinds of medical textiles, such as woven textiles, non-woven textiles, braided textiles and knitted textiles. Non-woven medical textiles constitute more than 60% of the total medical textiles used, but are almost disposable ordinary medical textiles. While knitted fabrics forms a small part of the medical textiles, but are greatly applied in high-tech medical textiles, containing artificial blood vessels, hernia patches, cardiac support devices, knitted medical expandable metallic stents and tendon scaffolds. Knitting structures, including weft knitting structure and warp knitting structure. The knitted textiles are popular for their loose structure, greater flexibility, higher porosity, more flexible structure and better forming technology. The present article will introduce some knitting structures and materials applied in the medical textiles in accordance with non-implantable, implantable, extra-corporeal textiles and healthcare and hygiene products

    Warp-Knitted Fabric Defect Segmentation Based on Non-Subsampled Wavelet-Based Contourlet Transform

    No full text
    In this paper, a non-subsampled wavelet-based contourlet transform (NWCT) is applied in warp-knitted fabric defect segmentation. Compared with the traditional contourlet transform, wavelet transform takes the place of Laplacian pyramid in NWCT and the directional filter bank is non-subsampled. The wavelet transform with improved wavelet threshold is put to use, and the original fabric image can be decomposed into low-frequency approximate coefficient A and high-frequency detail coefficients V, H, and D. The high-frequency detail coefficients are processed by the non-subsampled directional filter bank to get directional sub-band coefficients. Afterward, the effective sub-band coefficients based on regional energy are chosen to reconstruct V, H, and D. And the reconstructed fabric image will be achieved by inverse non-subsampled wavelet-based contourlet transform. The adaptive threshold method and morphological processing are used to obtain the legible defect profile. The experiment demonstrates that NWCT can achieve the positive segmentation regarding the common defects, such as broken warp, width barrier, and oil, and has excellent performance on these directional defects and regional defects. It is acknowledged that NWCT will provide a new way to detect warp-knitted fabric defects automatically

    Manufacture and Property of Warp-Knitted Fabrics with Polylactic Acid Multifilament

    No full text
    This study investigates the properties of polylactic acid (PLA) multifilament and its warp-knitted fabrics. Multifilament properties were tested and compared with PET multifilament with different diameters. The 83.3 dtex PLA multifilament was used to knit the fabric, and the fabric properties before and after dyeing were studied. Results showed that the mechanical properties of PLA multifilament were comparable to those of PET. However, PLA had a higher heat shrinkage rate. The dyed PLA warp-knitted fabric has excellent color fastness. Due to the influence of temperature and dye particles during the dyeing process, the breaking strength, air permeability and moisture permeability of the fabric were decreased. On the contrary, the elongation at break, abrasion resistance, anti-pilling properties, drape and crochet value of the fabric were increased

    Filtration Property of Monofilament Core–Shell Mesh Fabric Treated Via Tourmaline Hot Coating

    No full text
    In this study, woven fabrics with numerous electrostatic charges and desirable charge stability were investigated. A kind of core–shell monofilaments with different melting points between outer and inner layers were applied to wove the fabrics. These fabrics were hot coated through tourmaline particles as an charge enhancer at 122°C. Benefiting from the anions released by tourmaline particles and optimized content of the particles, the fabrics were endowed with surface potentials from −10 to −160 V and the voids content decreased from 45.4% to 41.2%, which contribute to the improvement in the filtration performance of the fabrics. A filtration mechanism was proposed while incremental surface charges with increasing tourmaline particles content have been confirmed through the noncontact measurement of electrostatic charges. The resultant fabrics exhibited a high filtration efficiency of 64.8% and superior long-term service performance. This study can provide a new application of the screen window for PM 2.5 governance

    Computer-Aided Design Method of Warp-Knitted Jacquard Spacer Fabrics

    No full text
    Based on a further study on knitting and jacquard principles, this paper presents a mathematical design model to make computer-aided design of warp-knitted jacquard spacer fabrics more efficient. The mathematical model with matrix method employs three essential elements of chain notation, threading and Jacquard designing. With this model, the processing to design warp-knitted jacquard spacer fabrics with CAD software is also introduced. In this study, the sports shoes which have separated functional areas according to the feet structure and characteristics of movement are analysed. The results show the different patterns on Jacquard spacer fabrics that are seamlessly stitched with jacquard technics. The computer-aided design method of warp-knitted jacquard spacer fabrics is efficient and simple

    Mechanical Properties of Polypropylene Warp-Knitted Hernia Repair Mesh with Different Pull Densities

    No full text
    The medical polypropylene monofilament with a diameter of 0.10 mm was used as the material. Four different pull densities and two different warp run-ins were set up on the electronic traverse high-speed Tricot warp knitting machine, with the gauge of E28. The raw material was used to knit four variations of single bar plain knitted fabrics with 1 in-1 miss setting. Each variation required eight samples. The mechanical properties of the above 32 warp-knitted fabric samples are tested, including their tensile stress (in both vertical and horizontal directions), tearing stress (in both vertical and horizontal directions) and bursting stress. The results obtained shows that the relationship between the vertical, the horizontal stress, and the pull density are not monotonic. The tensile stress in the vertical direction firstly decreases and then increases with an increase of the pull density; however, the tensile stress in the horizontal direction firstly increases and then slightly decreases with an increase of the pull density; again the vertical tensile stress of all fabrics was always higher than the horizontal tensile stress. The bursting stress has a positive linear relation to the pull density. The vertical tearing stresses of four samples were greater than the horizontal tearing stress

    Tensile properties and meso-scale mechanism of multi-axial warp-knitted fabrics of various structural designs

    No full text
    122-129Tensile properties tests of three kinds of multi-axial warp-knitted fabric, namely triaxial fabrics (-45o/90o /+45o and -45o /0o /+45o) and quadraxial fabric (-45o /90o /+45o /0o) have been studied along the orientations of 0o, 45o and 90o. Stress-strain curves are obtained. The whole tension processing has been observed through high-speed camera and the series of images is picked up to analyze the meso-scale mechanism of the extension and displacement of tows on oriented layers. The results indicate that the tensile properties of MWK fabric are closely related to the orientations of the layers, and stitching yarns incarnate significant effects on deformation procedures of fabrics
    corecore