1,307 research outputs found

    Interacting non-minimally coupled canonical, phantom and quintom models of holographic dark energy in non-flat universe

    Get PDF
    Motivated by our recent work \cite{set1}, we generalize this work to the interacting non-flat case. Therefore in this paper we deal with canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, within the framework of interacting holographic dark energy. We employ the holographic model of interacting dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named LL.Comment: 18 pages, 3 figures. Accepted for publication in IJMPD (2010

    Reconstructing generalized ghost condensate model with dynamical dark energy parametrizations and observational datasets

    Get PDF
    Observations of high-redshift supernovae indicate that the universe is accelerating at the present stage, and we refer to the cause for this cosmic acceleration as ``dark energy''. In particular, the analysis of current data of type Ia supernovae (SNIa), cosmic large-scale structure (LSS), and the cosmic microwave background (CMB) anisotropy implies that, with some possibility, the equation-of-state parameter of dark energy may cross the cosmological-constant boundary (w=−1w=-1) during the recent evolution stage. The model of ``quintom'' has been proposed to describe this w=−1w=-1 crossing behavior for dark energy. As a single-real-scalar-field model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. In this paper, we reconstruct the generalized ghost condensate model in the light of three forms of parametrization for dynamical dark energy, with the best-fit results of up-to-date observational data.Comment: 8 pages, 3 figures; references added; accepted for publication in Mod. Phys. Lett.

    Renormalization group approach to vibrational energy transfer in protein

    Full text link
    Renormalization group method is applied to the study of vibrational energy transfer in protein molecule. An effective Lagrangian and associated equations of motion to describe the resonant energy transfer are analyzed in terms of the first-order perturbative renormalization group theory that has been developed as a unified tool for global asymptotic analysis. After the elimination of singular terms associated with the Fermi resonance, amplitude equations to describe the slow dynamics of vibrational energy transfer are derived, which recover the result obtained by a technique developed in nonlinear optics [S.J. Lade, Y.S. Kivshar, Phys. Lett. A 372 (2008) 1077].Comment: 11 page

    Two-subband electron transport in nonideal quantum wells

    Full text link
    Electron transport in nonideal quantum wells (QW) with large-scale variations of energy levels is studied when two subbands are occupied. Although the mean fluctuations of these two levels are screened by the in-plane redistribution of electrons, the energies of both levels remain nonuniform over the plane. The effect of random inhomogeneities on the classical transport is studied within the framework of a local response approach for weak disorder. Both short-range and small-angle scattering mechanisms are considered. Magnetotransport characteristics and the modulation of the effective conductivity by transverse voltage are evaluated for different kinds of confinement potentials (hard wall QW, parabolic QW, and stepped QW).Comment: 10 pages, 6 figure

    Statefinder diagnosis in a non-flat universe and the holographic model of dark energy

    Full text link
    In this paper, we study the holographic dark energy model in non-flat universe from the statefinder viewpoint. We plot the evolutionary trajectories of the holographic dark energy model for different values of the parameter cc as well as for different contributions of spatial curvature, in the statefinder parameter-planes. The statefinder diagrams characterize the properties of the holographic dark energy and show the discrimination between this scenario and other dark energy models. As we show, the contributions of the spatial curvature in the model can be diagnosed out explicitly by the statefinder diagrams. Furthermore, we also investigate the holographic dark energy model in the w−wâ€Čw-w' plane, which can provide us with a useful dynamical diagnosis complement to the statefinder geometrical diagnosis.Comment: 16 pages, 4 figures; final versio

    Coupled Quintessence and Phantom Based On a Dilaton

    Get PDF
    Based on dilatonic dark energy model, we consider two cases: dilaton field with positive kinetic energy(coupled quintessence) and with negative kinetic energy(phantom). In the two cases, we investigate the existence of attractor solutions which correspond to an equation of state parameter ω=−1\omega=-1 and a cosmic density parameter Ωσ=1\Omega_\sigma=1. We find that the coupled term between matter and dilaton can't affect the existence of attractor solutions. In the Mexican hat potential, the attractor behaviors, the evolution of state parameter ω\omega and cosmic density parameter Ω\Omega, are shown mathematically. Finally, we show the effect of coupling term on the evolution of X(σσ0)X(\frac{\sigma}{\sigma_0}) and Y(σ˙σ02)Y(\frac{\dot{\sigma}}{\sigma^2_0}) with respect to N(lna)N(lna) numerically.Comment: 9 pages, 11 figures, some references and Journal-ref adde

    Reconstructing quintom from WMAP 5-year observations: Generalized ghost condensate

    Full text link
    In the 5-year WMAP data analysis, a new parametrization form for dark energy equation-of-state was used, and it has been shown that the equation-of-state, w(z)w(z), crosses the cosmological-constant boundary w=−1w=-1. Based on this observation, in this paper, we investigate the reconstruction of quintom dark energy model. As a single-real-scalar-field model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. Therefore, we reconstruct this scalar-field quintom dark energy model from the WMAP 5-year observational results. As a comparison, we also discuss the quintom reconstruction based on other specific dark energy ansatzs, such as the CPL parametrization and the holographic dark energy scenarios.Comment: 8 pages, 11 figure

    A Note on Temperature and Energy of 4-dimensional Black Holes from Entropic Force

    Full text link
    We investigate the temperature and energy on holographic screens for 4-dimensional black holes with the entropic force idea proposed by Verlinde. We find that the "Unruh-Verlinde temperature" is equal to the Hawking temperature on the horizon and can be considered as a generalized Hawking temperature on the holographic screen outside the horizons. The energy on the holographic screen is not the black hole mass MM but the reduced mass M0M_0, which is related to the black hole parameters. With the replacement of the black hole mass MM by the reduced mass M0M_0, the entropic force can be written as F=GmM0r2F=\frac{GmM_0}{r^2}, which could be tested by experiments.Comment: V4: 13 pages, 4 figures, title changed, discussions for experiments added, accepted by CQ

    Dilatonic ghost condensate as dark energy

    Full text link
    We explore a dark energy model with a ghost scalar field in the context of the runaway dilaton scenario in low-energy effective string theory. We address the problem of vacuum stability by implementing higher-order derivative terms and show that a cosmologically viable model of ``phantomized'' dark energy can be constructed without violating the stability of quantum fluctuations. We also analytically derive the condition under which cosmological scaling solutions exist starting from a general Lagrangian including the phantom type scalar field. We apply this method to the case where the dilaton is coupled to non-relativistic dark matter and find that the system tends to become quantum mechanically unstable when a constant coupling is always present. Nevertheless, it is possible to obtain a viable cosmological solution in which the energy density of the dilaton eventually approaches the present value of dark energy provided that the coupling rapidly grows during the transition to the scalar field dominated era.Comment: 26 pages, 6 figure
    • 

    corecore