1,044 research outputs found

    Interacting non-minimally coupled canonical, phantom and quintom models of holographic dark energy in non-flat universe

    Get PDF
    Motivated by our recent work \cite{set1}, we generalize this work to the interacting non-flat case. Therefore in this paper we deal with canonical, phantom and quintom models, with the various fields being non-minimally coupled to gravity, within the framework of interacting holographic dark energy. We employ the holographic model of interacting dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named LL.Comment: 18 pages, 3 figures. Accepted for publication in IJMPD (2010

    Statefinder diagnosis in a non-flat universe and the holographic model of dark energy

    Full text link
    In this paper, we study the holographic dark energy model in non-flat universe from the statefinder viewpoint. We plot the evolutionary trajectories of the holographic dark energy model for different values of the parameter cc as well as for different contributions of spatial curvature, in the statefinder parameter-planes. The statefinder diagrams characterize the properties of the holographic dark energy and show the discrimination between this scenario and other dark energy models. As we show, the contributions of the spatial curvature in the model can be diagnosed out explicitly by the statefinder diagrams. Furthermore, we also investigate the holographic dark energy model in the www-w' plane, which can provide us with a useful dynamical diagnosis complement to the statefinder geometrical diagnosis.Comment: 16 pages, 4 figures; final versio

    Reconstructing quintom from WMAP 5-year observations: Generalized ghost condensate

    Full text link
    In the 5-year WMAP data analysis, a new parametrization form for dark energy equation-of-state was used, and it has been shown that the equation-of-state, w(z)w(z), crosses the cosmological-constant boundary w=1w=-1. Based on this observation, in this paper, we investigate the reconstruction of quintom dark energy model. As a single-real-scalar-field model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. Therefore, we reconstruct this scalar-field quintom dark energy model from the WMAP 5-year observational results. As a comparison, we also discuss the quintom reconstruction based on other specific dark energy ansatzs, such as the CPL parametrization and the holographic dark energy scenarios.Comment: 8 pages, 11 figure

    A Note on Temperature and Energy of 4-dimensional Black Holes from Entropic Force

    Full text link
    We investigate the temperature and energy on holographic screens for 4-dimensional black holes with the entropic force idea proposed by Verlinde. We find that the "Unruh-Verlinde temperature" is equal to the Hawking temperature on the horizon and can be considered as a generalized Hawking temperature on the holographic screen outside the horizons. The energy on the holographic screen is not the black hole mass MM but the reduced mass M0M_0, which is related to the black hole parameters. With the replacement of the black hole mass MM by the reduced mass M0M_0, the entropic force can be written as F=GmM0r2F=\frac{GmM_0}{r^2}, which could be tested by experiments.Comment: V4: 13 pages, 4 figures, title changed, discussions for experiments added, accepted by CQ

    Dilatonic ghost condensate as dark energy

    Full text link
    We explore a dark energy model with a ghost scalar field in the context of the runaway dilaton scenario in low-energy effective string theory. We address the problem of vacuum stability by implementing higher-order derivative terms and show that a cosmologically viable model of ``phantomized'' dark energy can be constructed without violating the stability of quantum fluctuations. We also analytically derive the condition under which cosmological scaling solutions exist starting from a general Lagrangian including the phantom type scalar field. We apply this method to the case where the dilaton is coupled to non-relativistic dark matter and find that the system tends to become quantum mechanically unstable when a constant coupling is always present. Nevertheless, it is possible to obtain a viable cosmological solution in which the energy density of the dilaton eventually approaches the present value of dark energy provided that the coupling rapidly grows during the transition to the scalar field dominated era.Comment: 26 pages, 6 figure

    Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers

    Full text link
    A simple analytic theory for mixtures of hard spheres and larger polymers with excluded volume interactions is developed. The mixture is shown to exhibit extensive immiscibility. For large polymers with strong excluded volume interactions, the density of monomers at the critical point for demixing decreases as one over the square root of the length of the polymer, while the density of spheres tends to a constant. This is very different to the behaviour of mixtures of hard spheres and ideal polymers, these mixtures although even less miscible than those with polymers with excluded volume interactions, have a much higher polymer density at the critical point of demixing. The theory applies to the complete range of mixtures of spheres with flexible polymers, from those with strong excluded volume interactions to ideal polymers.Comment: 9 pages, 4 figure

    Different Assay Conditions for Detecting the Production and Release of Heat-Labile and Heat-Stable Toxins in Enterotoxigenic Escherichia coli Isolates

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) produce heat-labile (LT) and/or heat-stable enterotoxins (ST). Despite that, the mechanism of action of both toxins are well known, there is great controversy in the literature concerning the in vitro production and release of LT and, for ST, no major concerns have been discussed. Furthermore, the majority of published papers describe the use of only one or a few ETEC isolates to define the production and release of these toxins, which hinders the detection of ETEC by phenotypic approaches. Thus, the present study was undertaken to obtain a better understanding of ST and LT toxin production and release under laboratory conditions. Accordingly, a collection of 90 LT-, ST-, and ST/LT-producing ETEC isolates was used to determine a protocol for toxin production and release aimed at ETEC detection. for this, we used previously raised anti-LT antibodies and the anti-ST monoclonal and polyclonal antibodies described herein. the presence of bile salts and the use of certain antibiotics improved ETEC toxin production/release. Triton X-100, as chemical treatment, proved to be an alternative method for toxin release. Consequently, a common protocol that can increase the production and release of LT and ST toxins could facilitate and enhance the sensitivity of diagnostic tests for ETEC using the raised and described antibodies in the present work.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Butantan Inst, Bacteriol Lab, BR-05503900 São Paulo, BrazilSão Paulo Trop Med Inst, Seroepidemiol & Immunol Lab, BR-05403000 São Paulo, BrazilFleury Med & Hlth, BR-04344903 São Paulo, BrazilButantan Inst, Immunopathol Lab, BR-05503900 São Paulo, BrazilButantan Inst, Immunochem Lab, BR-05503900 São Paulo, BrazilAdolfo Lutz Inst, Bacteriol Sect, BR-01246000 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol, BR-04923062 São Paulo, SP, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Microbiol, BR-04923062 São Paulo, SP, BrazilWeb of Scienc
    corecore