8 research outputs found

    Pharmacometrics of high dose ivermectin in early COVID-19: an open label, randomized, controlled adaptive platform trial (PLATCOV)

    Get PDF
    Background: There is no generally accepted methodology for in vivo assessment of antiviral activity in SARS-CoV-2 infections. Ivermectin has been recommended widely as a treatment of COVID-19, but whether it has clinically significant antiviral activity in vivo is uncertain. Methods: In a multicentre open label, randomized, controlled adaptive platform trial, adult patients with early symptomatic COVID-19 were randomized to one of six treatment arms including high-dose oral ivermectin (600 µg/kg daily for 7 days), the monoclonal antibodies casirivimab and imdevimab (600 mg/600 mg), and no study drug. The primary outcome was the comparison of viral clearance rates in the modified intention-to-treat population. This was derived from daily log10 viral densities in standardized duplicate oropharyngeal swab eluates. This ongoing trial is registered at https://clinicaltrials.gov/ (NCT05041907). Results: Randomization to the ivermectin arm was stopped after enrolling 205 patients into all arms, as the prespecified futility threshold was reached. Following ivermectin, the mean estimated rate of SARS-CoV-2 viral clearance was 9.1% slower (95% confidence interval [CI] –27.2% to +11.8%; n=45) than in the no drug arm (n=41), whereas in a preliminary analysis of the casirivimab/imdevimab arm it was 52.3% faster (95% CI +7.0% to +115.1%; n=10 (Delta variant) vs. n=41). Conclusions: High-dose ivermectin did not have measurable antiviral activity in early symptomatic COVID-19. Pharmacometric evaluation of viral clearance rate from frequent serial oropharyngeal qPCR viral density estimates is a highly efficient and well-tolerated method of assessing SARS-CoV-2 antiviral therapeutics in vitro

    Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes.

    No full text
    In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0-38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria

    Effects of sevuparin on rosette formation and cytoadherence of <i>Plasmodium falciparum</i> infected erythrocytes

    No full text
    <div><p>In severe <i>falciparum</i> malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated <i>falciparum</i> malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of <i>Plasmodium falciparum</i> isolates from Thailand were investigated. Trophozoite stages of <i>P</i>. <i>falciparum</i>-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of <i>P</i>. <i>falciparum</i> isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0–38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts <i>P</i>. <i>falciparum</i> rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe <i>falciparum</i> malaria.</p></div

    Effects of sevuparin on rosette formation and cytoadherence of <i>Plasmodium falciparum</i> infected erythrocytes - Fig 2

    No full text
    <p>(A) The effects of sevuparin on Pf-iRBC adherence (n = 28). Median (interquartile range) adherence number of Pf-iRBCs binding per 1000 HDMECs at each concentration of sevuparin. (B) The inhibition of sevuparin on cytoadherence of <i>P</i>. <i>falciparum</i> (n = 28). Median (interquartile range) inhibition effect on cytoadhesion. The cytoadherence of patient isolates was significantly inhibited by sevuparin at concentrations ≥ 100 μg/mL (all p < 0.05).</p

    Effects of sevuparin on rosette formation and cytoadherence of <i>Plasmodium falciparum</i> infected erythrocytes - Fig 1

    No full text
    <p>(A) Effect of sevuparin on rosetting (%) of <i>P</i>. <i>falciparum</i> (n = 47) is dose dependent. The data show the median with interquartile range of rosettes formed at each concentration of sevuparin. (B) Median (interquartile range) % disruption of rosetting at each concentration of sevuparin. Sevuparin significantly disrupted rosette formation, p < 0.001.</p

    Antiviral efficacy of molnupiravir versus ritonavir-boosted nirmatrelvir in patients with early symptomatic COVID-19 (PLATCOV): an open-label, phase 2, randomised, controlled, adaptive trial

    No full text
    Background: Molnupiravir and ritonavir-boosted nirmatrelvir are the two leading oral COVID-19 antiviral treatments, but their antiviral activities in patients have not been compared directly. The aim of this ongoing platform trial is to compare different antiviral treatments using the rate of viral clearance as the measure of antiviral effect. Methods: PLATCOV is an open-label, multicentre, phase 2, randomised, controlled, adaptive pharmacometric platform trial running in Thailand, Brazil, Pakistan, and Laos. The component of the trial reported here was conducted in the Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. We recruited low-risk adult patients aged 18–50 years with early symptomatic COVID-19 (<4 days of symptoms). Eligible patients were randomly assigned using block randomisation via a centralised web app to one of seven treatment groups: molnupiravir, ritonavir-boosted nirmatrelvir, casirivimab–imdevimab, tixagevimab–cilgavimab, favipiravir, fluoxetine, or no study drug. The no study drug group comprised a minimum proportion of 20% of patients at all times, with uniform randomisation ratios applied across the active treatment groups. Results for the concurrently randomised molnupiravir, ritonavir-boosted nirmatrelvir, and no study drug groups are reported here. The primary endpoint was the rate of oropharyngeal viral clearance assessed in a modified intention-to-treat population, defined as patients with more than 2 days of follow-up. Safety was assessed in all participants who took at least one dose of the medication. The viral clearance rate was derived under a Bayesian hierarchical linear model fitted to the log10 viral densities in standardised duplicate oropharyngeal swab eluates taken daily over 1 week (18 measurements). Treatment groups with a probability of more than 0·9 that viral clearance was accelerated by more than 20% compared with no drug entered a non-inferiority comparison (with a 10% non-inferiority margin) compared with the platform's current most effective drug. This ongoing trial is registered at ClinicalTrials.gov, NCT05041907. Findings: Between June 6, 2022, and Feb 23, 2023, 209 patients in Thailand were enrolled and concurrently randomly assigned to molnupiravir (n=65), ritonavir-boosted nirmatrelvir (n=59), or no study drug (n=85). 129 (62%) of the patients were female and 80 (38%) were male. Relative to the no study drug group, the rates of viral clearance were 37% (95% credible interval 16–65) faster with molnupiravir and 84% (54–119) faster with ritonavir-boosted nirmatrelvir. In the non-inferiority comparison, viral clearance was 25% (10–38) slower with molnupiravir than ritonavir-boosted nirmatrelvir. Molnupiravir was removed from the study platform when it reached the prespecified inferiority margin of 10% compared with ritonavir-boosted nirmatrelvir. Median estimated viral clearance half-lives were 8·5 h (IQR 6·7–10·1) with ritonavir-boosted nirmatrelvir, 11·6 h (8·6–15·4) with molnupiravir, and 15·5 h (11·9–21·2) with no study drug. Viral rebound occurred more frequently following nirmatrelvir (six [10%] of 58) compared with the no study drug (one [1%] of 84; p=0·018) or the molnupiravir (one [2%] of 65; p=0·051) groups. Persistent infections following molnupiravir had more viral mutations (three of nine patients had an increased number of single nucleotide polymorphisms in samples collected at 7 or more days compared with those at baseline) than after nirmatrelvir (zero of three) or no study drug (zero of 18). There were no adverse events of grade 3 or worse, or serious adverse events in any of the reported treatment groups. Interpretation: Both molnupiravir and ritonavir-boosted nirmatrelvir accelerate oropharyngeal SARS-CoV-2 viral clearance in patients with COVID-19, but the antiviral effect of ritonavir-boosted nirmatrelvir was substantially greater. Measurement of oropharyngeal viral clearance rates provides a rapid and well tolerated approach to the assessment and comparison of antiviral drugs in patients with COVID-19. It should be evaluated in other acute viral respiratory infections. Funding: Wellcome Trust through the COVID-19 Therapeutics Accelerator
    corecore