19 research outputs found

    Surface Morphology of Silicon Waveguide after Reactive Ion Etching (RIE)

    No full text
    The side wall profile roughness of the silicon waveguide prepared by electron beam lithography and reactive ion etching is extracted by using the boundary tracing method. The maximum, minimum, and average roughness values are extracted from the side wall boundary, and the changes of the side wall boundary of waveguide after electron beam exposure and reactive ion etching were compared. The roughness variation of the waveguide side wall is similar with the same length. And roughness from the bottom of the waveguide etched region is measured directly by laser confocal microscope and roughness correlation statistics are also obtained

    The importance of biofilm contamination control for dental unit waterlines: a multicenter assessment of the microbiota diversity of biofilm in dental unit waterlines

    No full text
    ABSTRACTBackground The biofilm formation in Dental Unit Waterlines (DUWLs) could become an important cause of infection during dental care, which could put immunocompromised individuals at risk of cross-infection. The aim of this study was to characterize the microbial communities of biofilms among DUWLs using high-throughput sequencing technology.Methods Twenty-nine biofilm samples were obtained from 24 dental chair units at 5 hospitals and 2 dental clinics. The genomic DNA of the samples was extracted, then 16S rDNA and ITS2 gene were amplified and sequenced. Alpha-diversity and Beta-diversity were calculated with QIIME2 and the Kruskal – Wallis H-test was adopted for statistical analysis.Results Microbial communities with a high diversity of bacteria (377 genera) and fungi (83 genera) were detected in the biofilm samples. The dominant phylum of bacteria was Proteobacteria (93.27%) and that of fungi was Basidiomycota (68.15%). Potential human pathogens were detected including 7 genera of bacteria (Pseudomonas, Stenotrophomonas, Hafnia-Obesumbacterium, Burkholderia-Caballeronia-Paraburkholderia, Ralstonia, Enterobacter, Klebsiella) and 6 genera of fungi (Malassezia, Candida, Alternaria, Cryptococcus, Rhodotorula, Rhinocladiella).Conclusions This multicenter assessment revealed the infectious risk during dental care. It emphasized the importance of biofilm control due to biofilm accumulation and multiple kinds of opportunistic pathogens in DUWLs

    In vivo acquisition of blaKPC-2 with low biological cost in blaAFM-1-harboring ST463 hypervirulent Pseudomonas aeruginosa from a patient with hematologic malignancy

    No full text
    ABSTRACT: Objectives: Klebsiella pneumoniae carbapenemase (KPC)–producing sequence type (ST) 463 Pseudomonas aeruginosa are increasingly prevalent in China. This study aims to investigate how blaKPC-2 is acquired in ST463 P. aeruginosa during antimicrobial therapy. Methods: Two extensively drug-resistant P. aeruginosa strains, B1122 and U1121, were respectively isolated from blood and urine of a patient during carbapenem therapy. Whole-genome sequences were obtained, and minimum inhibitory concentrations (MICs) were determined. Plasmid transferability and stability were examined. Bacterial growth kinetics, biofilm formation, and virulence level was assessed. Results: U1121 and B1122 were only susceptible to amikacin and intermediately susceptible to colistin. They were isogenic ST463 P. aeruginosa strains and shared the same chromosome-encoded resistance genes, including blaAFM-1. This is the first report of chromosomal integration of blaAFM-1 in P. aeruginosa mediated by ISCR29. pU1121 and pB1122, which shared almost identical backbone, were the sole plasmids in U1121 and B1122, respectively, differing by an insertion region containing two copies of blaKPC-2 genes observed on pU1121. Sequence alignment revealed that pU1121 might evolve in vivo from pB1122 via IS26-mediated continuous genetic rearrangement in response to selective challenge from carbapenem. pU1121 was not self-transmissible and could be stably maintained in the host in the absence of antibiotic. Both U1121 and B1122 were hypervirulent, and no differences on virulence were recorded between them. However, U1121 exhibited significant impaired growth in comparison with B1122. Conclusion: ST463 P. aeruginosa can capture blaKPC-2 through horizontal transfer of insertion sequence under antibiotic selection pressure, which does decrease the fitness but does not impair the virulence of the ancestor

    Pseudomonas aeruginosa High-Risk Sequence Type 463 Co-Producing KPC-2 and AFM-1 Carbapenemases, China, 2020–2022

    No full text
    We report the clonal spread and evolution of high-risk Pseudomonas aeruginosa sequence type 463 co-producing KPC-2 and AFM-1 carbapenemases isolated from hospital patients in China during 2020–2022. Those strains pose a substantial public health threat and surveillance and stricter infection-control measures are essential to prevent further infections

    Strand Displacement-Induced Enzyme-Free Amplification for Label-Free and Separation-Free Ultrasensitive Atomic Fluorescence Spectrometric Detection of Nucleic Acids and Proteins

    No full text
    In previous work, we have developed a simple strategy for a label-free and separation-free bioassay for target DNA and protein, with the limit of detection at the nM level only. Herein, taking advantage of atomic fluorescence spectrometric detection of metal ions and amplification of DNA, a label-free and separation-free ultrasensitive homogeneous DNA analytical platform for target DNA and protein detection was developed on the basis of an enzyme-free strand displacement signal amplification strategy for dramatically improved detectability. Using the T–Hg<sup>2+</sup>–T hairpin structure as the probe, the target DNA binds with HP (T–Hg<sup>2+</sup>–T hairpin structure) and released the Hg<sup>2+</sup> first; then, the P4 (help DNA) hybridizes with target–P3 complex and free the target DNA, which is used to trigger another reaction cycle. The cycling use of the target amplifies the mercury atomic fluorescence intensity for ultrasensitive DNA detection. Moreover, the enzyme-free strand displacement signal amplification analytical system was further extended for protein detection by introducing an aptamer–P2 arched structure with thrombin as a model analyte. The current homogeneous strategy provides an ultrasensitive AFS detection of DNA and thrombin down to the 0.3 aM and 0.1 aM level, respectively, with a high selectivity. This strategy could be a promising unique alternative for nucleic acid and protein assay

    Table_6_Comprehensive proteome, phosphoproteome and kinome characterization of luminal A breast cancer.xlsx

    No full text
    BackgroundBreast cancer is one of the most frequently occurring malignant cancers worldwide. Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two most common histological subtypes of breast cancer. In this study, we aimed to deeply explore molecular characteristics and the relationship between IDC and ILC subtypes in luminal A subgroup of breast cancer using comprehensive proteomics and phosphoproteomics analysis.MethodsCancer tissues and noncancerous adjacent tissues (NATs) with the luminal A subtype (ER- and PR-positive, HER2-negative) were obtained from paired IDC and ILC patients respectively. Label-free quantitative proteomics and phosphoproteomics methods were used to detect differential proteins and the phosphorylation status between 10 paired breast cancer and NATs. Then, the difference in protein expression and its phosphorylation between IDC and ILC subtypes were explored. Meanwhile, the activation of kinases and their substrates was also revealed by Kinase-Substrate Enrichment Analysis (KSEA).ResultsIn the luminal A breast cancer, a total of 5,044 high-confidence proteins and 3,808 phosphoproteins were identified from 10 paired tissues. The protein phosphorylation level in ILC tissues was higher than that in IDC tissues. Histone H1.10 was significantly increased in IDC but decreased in ILC, Conversely, complement C4-B and Crk-like protein were significantly decreased in IDC but increased in ILC. Moreover, the increased protein expression of Septin-2, Septin-9, Heterogeneous nuclear ribonucleoprotein A1 and Kinectin but reduce of their phosphorylation could clearly distinguish IDC from ILC. In addition, IDC was primarily related to energy metabolism and MAPK pathway, while ILC was more closely involved in the AMPK and p53/p21 pathways. Furthermore, the kinomes in IDC were primarily significantly activated in the CMGC groups.ConclusionsOur research provides insights into the molecular characterization of IDC and ILC and contributes to discovering novel targets for further drug development and targeted treatment.</p

    Table_4_Comprehensive proteome, phosphoproteome and kinome characterization of luminal A breast cancer.xlsx

    No full text
    BackgroundBreast cancer is one of the most frequently occurring malignant cancers worldwide. Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two most common histological subtypes of breast cancer. In this study, we aimed to deeply explore molecular characteristics and the relationship between IDC and ILC subtypes in luminal A subgroup of breast cancer using comprehensive proteomics and phosphoproteomics analysis.MethodsCancer tissues and noncancerous adjacent tissues (NATs) with the luminal A subtype (ER- and PR-positive, HER2-negative) were obtained from paired IDC and ILC patients respectively. Label-free quantitative proteomics and phosphoproteomics methods were used to detect differential proteins and the phosphorylation status between 10 paired breast cancer and NATs. Then, the difference in protein expression and its phosphorylation between IDC and ILC subtypes were explored. Meanwhile, the activation of kinases and their substrates was also revealed by Kinase-Substrate Enrichment Analysis (KSEA).ResultsIn the luminal A breast cancer, a total of 5,044 high-confidence proteins and 3,808 phosphoproteins were identified from 10 paired tissues. The protein phosphorylation level in ILC tissues was higher than that in IDC tissues. Histone H1.10 was significantly increased in IDC but decreased in ILC, Conversely, complement C4-B and Crk-like protein were significantly decreased in IDC but increased in ILC. Moreover, the increased protein expression of Septin-2, Septin-9, Heterogeneous nuclear ribonucleoprotein A1 and Kinectin but reduce of their phosphorylation could clearly distinguish IDC from ILC. In addition, IDC was primarily related to energy metabolism and MAPK pathway, while ILC was more closely involved in the AMPK and p53/p21 pathways. Furthermore, the kinomes in IDC were primarily significantly activated in the CMGC groups.ConclusionsOur research provides insights into the molecular characterization of IDC and ILC and contributes to discovering novel targets for further drug development and targeted treatment.</p

    Table_5_Comprehensive proteome, phosphoproteome and kinome characterization of luminal A breast cancer.xlsx

    No full text
    BackgroundBreast cancer is one of the most frequently occurring malignant cancers worldwide. Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two most common histological subtypes of breast cancer. In this study, we aimed to deeply explore molecular characteristics and the relationship between IDC and ILC subtypes in luminal A subgroup of breast cancer using comprehensive proteomics and phosphoproteomics analysis.MethodsCancer tissues and noncancerous adjacent tissues (NATs) with the luminal A subtype (ER- and PR-positive, HER2-negative) were obtained from paired IDC and ILC patients respectively. Label-free quantitative proteomics and phosphoproteomics methods were used to detect differential proteins and the phosphorylation status between 10 paired breast cancer and NATs. Then, the difference in protein expression and its phosphorylation between IDC and ILC subtypes were explored. Meanwhile, the activation of kinases and their substrates was also revealed by Kinase-Substrate Enrichment Analysis (KSEA).ResultsIn the luminal A breast cancer, a total of 5,044 high-confidence proteins and 3,808 phosphoproteins were identified from 10 paired tissues. The protein phosphorylation level in ILC tissues was higher than that in IDC tissues. Histone H1.10 was significantly increased in IDC but decreased in ILC, Conversely, complement C4-B and Crk-like protein were significantly decreased in IDC but increased in ILC. Moreover, the increased protein expression of Septin-2, Septin-9, Heterogeneous nuclear ribonucleoprotein A1 and Kinectin but reduce of their phosphorylation could clearly distinguish IDC from ILC. In addition, IDC was primarily related to energy metabolism and MAPK pathway, while ILC was more closely involved in the AMPK and p53/p21 pathways. Furthermore, the kinomes in IDC were primarily significantly activated in the CMGC groups.ConclusionsOur research provides insights into the molecular characterization of IDC and ILC and contributes to discovering novel targets for further drug development and targeted treatment.</p

    Table_1_Comprehensive proteome, phosphoproteome and kinome characterization of luminal A breast cancer.xlsx

    No full text
    BackgroundBreast cancer is one of the most frequently occurring malignant cancers worldwide. Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two most common histological subtypes of breast cancer. In this study, we aimed to deeply explore molecular characteristics and the relationship between IDC and ILC subtypes in luminal A subgroup of breast cancer using comprehensive proteomics and phosphoproteomics analysis.MethodsCancer tissues and noncancerous adjacent tissues (NATs) with the luminal A subtype (ER- and PR-positive, HER2-negative) were obtained from paired IDC and ILC patients respectively. Label-free quantitative proteomics and phosphoproteomics methods were used to detect differential proteins and the phosphorylation status between 10 paired breast cancer and NATs. Then, the difference in protein expression and its phosphorylation between IDC and ILC subtypes were explored. Meanwhile, the activation of kinases and their substrates was also revealed by Kinase-Substrate Enrichment Analysis (KSEA).ResultsIn the luminal A breast cancer, a total of 5,044 high-confidence proteins and 3,808 phosphoproteins were identified from 10 paired tissues. The protein phosphorylation level in ILC tissues was higher than that in IDC tissues. Histone H1.10 was significantly increased in IDC but decreased in ILC, Conversely, complement C4-B and Crk-like protein were significantly decreased in IDC but increased in ILC. Moreover, the increased protein expression of Septin-2, Septin-9, Heterogeneous nuclear ribonucleoprotein A1 and Kinectin but reduce of their phosphorylation could clearly distinguish IDC from ILC. In addition, IDC was primarily related to energy metabolism and MAPK pathway, while ILC was more closely involved in the AMPK and p53/p21 pathways. Furthermore, the kinomes in IDC were primarily significantly activated in the CMGC groups.ConclusionsOur research provides insights into the molecular characterization of IDC and ILC and contributes to discovering novel targets for further drug development and targeted treatment.</p

    Table_2_Comprehensive proteome, phosphoproteome and kinome characterization of luminal A breast cancer.xlsx

    No full text
    BackgroundBreast cancer is one of the most frequently occurring malignant cancers worldwide. Invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC) are the two most common histological subtypes of breast cancer. In this study, we aimed to deeply explore molecular characteristics and the relationship between IDC and ILC subtypes in luminal A subgroup of breast cancer using comprehensive proteomics and phosphoproteomics analysis.MethodsCancer tissues and noncancerous adjacent tissues (NATs) with the luminal A subtype (ER- and PR-positive, HER2-negative) were obtained from paired IDC and ILC patients respectively. Label-free quantitative proteomics and phosphoproteomics methods were used to detect differential proteins and the phosphorylation status between 10 paired breast cancer and NATs. Then, the difference in protein expression and its phosphorylation between IDC and ILC subtypes were explored. Meanwhile, the activation of kinases and their substrates was also revealed by Kinase-Substrate Enrichment Analysis (KSEA).ResultsIn the luminal A breast cancer, a total of 5,044 high-confidence proteins and 3,808 phosphoproteins were identified from 10 paired tissues. The protein phosphorylation level in ILC tissues was higher than that in IDC tissues. Histone H1.10 was significantly increased in IDC but decreased in ILC, Conversely, complement C4-B and Crk-like protein were significantly decreased in IDC but increased in ILC. Moreover, the increased protein expression of Septin-2, Septin-9, Heterogeneous nuclear ribonucleoprotein A1 and Kinectin but reduce of their phosphorylation could clearly distinguish IDC from ILC. In addition, IDC was primarily related to energy metabolism and MAPK pathway, while ILC was more closely involved in the AMPK and p53/p21 pathways. Furthermore, the kinomes in IDC were primarily significantly activated in the CMGC groups.ConclusionsOur research provides insights into the molecular characterization of IDC and ILC and contributes to discovering novel targets for further drug development and targeted treatment.</p
    corecore