10 research outputs found

    Plant Health and Rhizosphere Microbiome: Effects of the Bionematicide Aphanocladium album in Tomato Plants Infested by Meloidogyne javanica

    Get PDF
    The artificial introduction in the soil of antagonistic microorganisms can be a successful strategy, alternative to agrochemicals, for the control of the root-knot nematodes (Meloidogyne spp.) and for preserving plant health. On the other hand, plant roots and the associated rhizosphere constitute a complex system in which the contribution of microbial community is fundamental to plant health and development, since microbes may convert organic and inorganic substances into available plant nutrients. In the present study, the potential nematicidal activity of the biopesticide Aphanocladium album (A. album strain MX-95) against the root-knot nematode Meloidogyne javanica in infected tomato plants was investigated. Specifically, the effect of the A. album treatment on plant fitness was evaluated observing the plant morphological traits and also considering the nematode propagation parameters, the A. album MX-95 vitality and population density. In addition, the treatment effects on the rhizosphere microbiome were analysed by a metabarcoding procedure. Treatments with A. album isolate MX-95 significantly decreased root gall severity index and soil nematode population. The treatment also resulted in increased rhizosphere microbial populations. A. album MX-95 can be favourably considered as a new bionematicide to control M. javanica infestation

    Alterations of natural killer cells activatory molecules phenotype and function in mothers of ASD children: a pilot study

    Get PDF
    IntroductionAutism spectrum disorder (ASD) is accompanied by complex immune alterations and inflammation, and the possible role played by Natural Killer (NK) in such alterations is only barely understood.MethodsTo address this question we analysed activating and inhibitory NK receptors, as well as NK cells phenotype and function in a group of mothers of children who developed ASD (ASD-MO; N=24) comparing results to those obtained in mothers of healthy children who did not develop (HC-MO; N=25).ResultsResults showed that in ASD-MO compared to HC-MO: 1) NK cells expressing the inhibitory receptor ILT2 are significantly decreased; 2) the activating HLA-G14bp+ polymorphism is more frequently observed and is correlated with the decrease of ILT2-expressing cells; 3) the CD56bright and CD56dim NK subsets are increased; 4) IFNÎł and TNF production is reduced; and 5) perforin- and granzymes-releasing NK cells are increased even in unstimulated conditions and could not be upregulated by mitogenic stimulation.DiscussionResults herein reinforce the hypothesis that ASD relatives present traits similar to, but not as severe as the defining features of ASD (Autism endophenotype) and identify a role for NK cells impairment in generating the inflammatory milieu that is observed in ASD

    Capitolo 21 - Le analisi di sequenziamento per lo studio del microbiota.

    No full text
    Il microbiota è l'insieme di organismi comprendenti Eubatteri, Archea, Eucarioti, virus, batteriofagi, la cui presenza e composizione caratterizza diverse nicchie ambientali, come ad esempio il suolo, l'acqua o i siti anatomici di un ospite pluricellulare complesso, tra i quali figura soprattutto l'intestino umano. La prima prova tangibile della presenza di questi organismi risale al XVII secolo..

    Accurate quantification of bacterial abundance in metagenomic DNAs accounting for variable DNA integrity levels

    No full text
    The quantification of the total microbial content in metagenomic samples is critical for investigating the interplay between the microbiome and its host, as well as for assessing the accuracy and precision of the relative microbial composition which can be strongly biased in low microbial biomass samples. In the present study, we demonstrate that digital droplet PCR (ddPCR) can provide accurate quantification of the total copy number of the 16S rRNA gene, the gene usually exploited for assessing total bacterial abundance in metagenomic DNA samples. Notably, using DNA templates with different integrity levels, as measured by the DNA integrity number (DIN), we demonstrated that 16S rRNA copy number quantification is strongly affected by DNA quality and determined a precise correlation between quantification underestimation and DNA degradation levels. Therefore, we propose an input DNA mass correction, according to the observed DIN value, which could prevent inaccurate quantification of 16S copy number in degraded metagenomic DNAs. Our results highlight that a preliminary evaluation of the metagenomic DNA integrity should be considered before performing metagenomic analyses of different samples, both for the assessment of the reliability of observed differential abundances in different conditions and to obtain significant functional insights

    Stem Cell Impairment at the Host-Microbiota Interface in Colorectal Cancer

    No full text
    Colorectal cancer (CRC) initiation is believed to result from the conversion of normal intestinal stem cells (ISCs) into cancer stem cells (CSCs), also known as tumor-initiating cells (TICs). Hence, CRC evolves through the multiple acquisition of well-established genetic and epigenetic alterations with an adenoma-carcinoma sequence progression. Unlike other stem cells elsewhere in the body, ISCs cohabit with the intestinal microbiota, which consists of a diverse community of microorganisms, including bacteria, fungi, and viruses. The gut microbiota communicates closely with ISCs and mounting evidence suggests that there is significant crosstalk between host and microbiota at the ISC niche level. Metagenomic analyses have demonstrated that the host-microbiota mutually beneficial symbiosis existing under physiologic conditions is lost during a state of pathological microbial imbalance due to the alteration of microbiota composition (dysbiosis) and/or the genetic susceptibility of the host. The complex interaction between CRC and microbiota is at the forefront of the current CRC research, and there is growing attention on a possible role of the gut microbiome in the pathogenesis of CRC through ISC niche impairment. Here we primarily review the most recent findings on the molecular mechanism underlying the complex interplay between gut microbiota and ISCs, revealing a possible key role of microbiota in the aberrant reprogramming of CSCs in the initiation of CRC. We also discuss recent advances in OMICS approaches and single-cell analyses to explore the relationship between gut microbiota and ISC/CSC niche biology leading to a desirable implementation of the current precision medicine approaches

    Stem Cell Impairment at the Host-Microbiota Interface in Colorectal Cancer

    No full text
    Colorectal cancer (CRC) initiation is believed to result from the conversion of normal intestinal stem cells (ISCs) into cancer stem cells (CSCs), also known as tumor-initiating cells (TICs). Hence, CRC evolves through the multiple acquisition of well-established genetic and epigenetic alterations with an adenoma-carcinoma sequence progression. Unlike other stem cells elsewhere in the body, ISCs cohabit with the intestinal microbiota, which consists of a diverse community of microorganisms, including bacteria, fungi, and viruses. The gut microbiota communicates closely with ISCs and mounting evidence suggests that there is significant crosstalk between host and microbiota at the ISC niche level. Metagenomic analyses have demonstrated that the host-microbiota mutually beneficial symbiosis existing under physiologic conditions is lost during a state of pathological microbial imbalance due to the alteration of microbiota composition (dysbiosis) and/or the genetic susceptibility of the host. The complex interaction between CRC and microbiota is at the forefront of the current CRC research, and there is growing attention on a possible role of the gut microbiome in the pathogenesis of CRC through ISC niche impairment. Here we primarily review the most recent findings on the molecular mechanism underlying the complex interplay between gut microbiota and ISCs, revealing a possible key role of microbiota in the aberrant reprogramming of CSCs in the initiation of CRC. We also discuss recent advances in OMICS approaches and single-cell analyses to explore the relationship between gut microbiota and ISC/CSC niche biology leading to a desirable implementation of the current precision medicine approaches

    A Differential Metabarcoding Approach to Describe Taxonomy Profiles of Bacteria and Archaea in the Saltern of Margherita di Savoia (Italy)

    No full text
    Microorganisms inhabiting saline environments are an interesting ecological model for the study of the adaptation of organisms to extreme living conditions and constitute a precious resource of enzymes and bioproducts for biotechnological applications. We analyzed the microbial communities in nine ponds with increasing salt concentrations (salinity range 4.9-36.0%) of the Saltern of Margherita di Savoia (Italy), the largest thalassohaline saltern in Europe. A deep-metabarcoding NGS procedure addressing separately the V5-V6 and V3-V4 hypervariable regions of the 16S rRNA gene of Bacteria and Archaea, respectively, and a CARD-FISH (catalyzed reporter deposition fluorescence in situ hybridization) analysis allowed us to profile the dynamics of microbial populations at the different salt concentrations. Both the domains were detected throughout the saltern, even if the low relative abundance of Archaea in the three ponds with the lowest salinities prevented the construction of the relative amplicon libraries. The highest cell counts were recorded at 14.5% salinity for Bacteria and at 24.1% salinity for Archaea. While Bacteria showed the greatest number of genera in the first ponds (salinity range 4.9-14.5%), archaeal genera were more numerous in the last ponds of the saltern (salinity 24.1-36.0%). Among prokaryotes, Salinibacter was the genus with the maximum abundance (~49% at 34.6% salinity). Other genera detected at high abundance were the archaeal Haloquadratum (~43% at 36.0% salinity) and Natronomonas (~18% at 13.1% salinity) and the bacterial "Candidatus Aquiluna" (~19% at 14.5% salinity). Interestingly, "Candidatus Aquiluna" had not been identified before in thalassohaline waters

    Natural and after colon washing fecal samples: the two sides of the coin for investigating the human gut microbiome

    No full text
    To date several studies address the important role of gut microbiome and its interplay with the human host in the health and disease status. However, the selection of a universal sampling matrix representative of the microbial biodiversity associated with the gastrointestinal (GI) tract, is still challenging. Here we present a study in which, through a deep metabarcoding analysis of the 16S rRNA gene, we compared two sampling matrices, feces (F) and colon washing feces (CWF), in order to evaluate their relative effectiveness and accuracy in representing the complexity of the human gut microbiome. A cohort of 30 volunteers was recruited and paired F and CWF samples were collected from each subject. Alpha diversity analysis confirmed a slightly higher biodiversity of CWF compared to F matched samples. Likewise, beta diversity analysis proved that paired F and CWF microbiomes were quite similar in the same individual, but remarkable inter-individual variability occurred among the microbiomes of all participants. Taxonomic analysis in matched samples was carried out to investigate the intra and inter individual/s variability. Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota were the main phyla in both F and CWF samples. At genus level, Bacteirodetes was the most abundant in F and CWF samples, followed by Faecalibacterium, Blautia and Escherichia-Shigella. Our study highlights an inter-individual variability greater than intra-individual variability for paired F and CWF samples. Indeed, an overall higher similarity was observed across matched F and CWF samples, suggesting, as expected, a remarkable overlap between the microbiomes inferred using the matched F and CWF samples. Notably, absolute quantification of total 16S rDNA by droplet digital PCR (ddPCR) revealed comparable overall microbial load between paired F and CWF samples. We report here the first comparative study on fecal and colon washing fecal samples for investigating the human gut microbiome and show that both types of samples may be used equally for the study of the gut microbiome. The presented results suggest that the combined use of both types of sampling matrices could represent a suitable choice to obtain a more complete overview of the human gut microbiota for addressing different biological and clinical questions

    [Computerized medical records in monitoring hypertension. Longitudinal and horizontal evaluation of 25 general practitioners in a primary care setting of Modena, Italy]

    No full text
    This study aims at evaluating the effectiveness of a computerized-based Clinical Record in monitoring hypertension in a Primary Care Setting. Blood pressure (BP) recording increased by 62% to 70% in the years 2004 to 2006. No improvement, however, was noticeable in the achievement of gold-standard targets in BP control (62% in all period). At the end of 2006 BP was recorded in 65% of patients. Among them, 2/3 of the non diabetics reached < 140/90 mmHg standard, while only 23% of diabetics reached < 130/80 mmHg standard. In conclusion, using a computerized clinical record appears not to be sufficient to obtain good clinical performances, yet it is a necessary first step to clinical audit
    corecore