33 research outputs found
Rho-Omega Mixing and the Pion Form Factor in the Time-like Region
We determine the magnitude, phase, and -dependence of -
``mixing'' in the pion form factor in the time-like region through fits to
e^+e^- \ra \pi^+ \pi^- data. The associated systematic errors in these
quantities, arising from the functional form used to fit the resonance,
are small. The systematic errors in the mass and width, however, are
larger than previously estimated.Comment: 20 pages, REVTeX, epsfig, 2 ps figures, minor change
Factorization in the model of unstable particles with continuous masses
We study processes with unstable particles in intermediate time-like states.
It is shown that the amplitudes squared of such processes factor exactly in the
framework of the model of unstable particles with continuous masses. Decay
widths and cross sections can then be represented in a universal factorized
form for an arbitrary set of interacting particles. This exact factorization is
caused by specific structure of propagators in the model. We formulate the
factorization method and perform a phenomenological analysis of the
factorization effects. The factorization method considerably simplifies
calculations while leading to compact and reasonable results.Comment: 20 pages, 6 figure
ALICE: Physics Performance Report, Volume I
ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently includes more than 900 physicists and senior engineers, from both nuclear and high-energy physics, from about 80 institutions in 28 countries. The experiment was approved in February 1997. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2001 and construction has started for most detectors. Since the last comprehensive information on detector and physics performance was published in the ALICE Technical Proposal in 1996, the detector as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) will give an updated and comprehensive summary of the current status and performance of the various ALICE subsystems, including updates to the Technical Design Reports, where appropriate, as well as a description of systems which have not been published in a Technical Design Report. The PPR will be published in two volumes. The current Volume I contains: 1. a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, 2. relevant experimental conditions at the LHC, 3. a short summary and update of the subsystem designs, and 4. a description of the offline framework and Monte Carlo generators. Volume II, which will be published separately, will contain detailed simulations of combined detector performance, event reconstruction, and analysis of a representative sample of relevant physics observables from global event characteristics to hard processes