3 research outputs found

    Mechanisms of institutional continuity in neoliberal "success stories" : developmental regimes in Chile and Estonia

    Get PDF
    © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Several mycoplasmas, such as the emergent human pathogen Mycoplasma genitalium, developed a complex polar structure, known as the terminal organelle (TO), responsible for a new type of cellular motility, which is involved in a variety of cell functions: cell division, adherence to host cells, and virulence. The TO cytoskeleton is organized as a multisubunit dynamic motor, including three main ultrastructures: the terminal button, the electrodense core, and the wheel complex. Here, we describe the interaction between MG200 and MG491, two of the main components of the TO wheel complex that connects the TO with the cell body and the cell membrane. The interaction between MG200 and MG491 has a KD in the 80 nM range, as determined by surface plasmon resonance. The interface between the two partners was confined to the >enriched in aromatic and glycine residues> (EAGR) box of MG200, previously described as a protein-protein interaction domain, and to a 25-residue-long peptide from the C-terminal region of MG491 by surface plasmon resonance and NMR spectroscopy studies. An atomic description of the MG200 EAGR box binding surface was also provided by solution NMR. An M. genitalium mutant lacking the MG491 segment corresponding to the peptide reveals specific alterations in cell motility and cell morphology indicating that the MG200-MG491 interaction plays a key role in the stability and functioning of the TO.This work was supported by Ministerio de Ciencia e Innovacion Grants BFU2012-36827 (to I. F.) and BFU2010-22209-C02-01 (to E. Q.), a grant from the Centre de Referencia de R+D de Biotecnologia (Generalitat de Catalunya, Spain) (to E. Q.), and by FEDER funds through the Operational Competitiveness Programme-COMPETE and by Portuguese national funds through FCT-Fundação para a Ciência e a Tecnologia under Project FCOMP-01-0124-FEDER-027581 (EXPL/BBB-BQB/0546/2012) (to B. C.). The NMR characterization was conducted through the FP7 Access to Research Infrastructures (Bio-NMR Contract 261863) and by Instruct, which is part of the European Strategy Forum on Research Infrastructures (ESFRI) and supported by national member subscriptionsPeer Reviewe

    Chemical solution deposition: a path towards low cost coated conductors

    No full text
    Abstract The achievement of low cost deposition techniques for high critical current YBa 2 Cu 3 O 7 coated conductors is one of the major objectives to achieve a widespread use of superconductivity in power applications. Chemical solution deposition techniques are appearing as a very promising methodology to achieve epitaxial oxide thin films at a low cost, so an intense effort is being carried out to develop routes for all chemical coated conductor tapes. In this work recent achievements will be presented towards the goal of combining the deposition of different type of buffer layers on metallic substrates based on metal-organic decomposition with the growth of YBa 2 Cu 3 O 7 layers using the trifluoroacetate route. The influence of processing parameters on the microstructure and superconducting properties will be stressed. High critical currents are demonstrated in 'all chemical' multilayers

    Creating the Pick's disease International Consortium: Association study of MAPT H2 haplotype with risk of Pick's disease.

    No full text
    corecore