4 research outputs found

    Understanding the AC conductivity and permittivity of trapdoor chabazites for future development of next-generation gas sensors

    Get PDF
    Synthetic K+ chabazite (KCHA), Cs+ chabazite (CsCHA) and Zn2+ chabazite (ZnCHA) have been synthesized and investigated in order to relate the differences in their crystalline structures to their thermal stability, moisture content and frequency dependent alternating current (AC) conductivity, permittivity and phase angle at a range of temperatures. The materials are shown to exhibit the universal dielectric response, which is typical of materials consisting of both conductive and insulating regions. Due to the presence of porosity, the three chabazites were hydrated significantly at room temperature and so the dehydrated state was achieved by heating the chabazites to high temperatures to ensure that all different energetic types of water were removed. Cation migration activation energies for KCHA (0.66 ± 0.10) eV, CsCHA (0.88 ± 0.01) eV and ZnCHA (0.90 ± 0.01) eV were determined during the cooling cycle from the fully dehydrated state to provide an accurate measurement of the activation energies. Good thermal stability of the materials was observed up to 710 °C and below 200 °C the electrical properties can be strongly influenced by hydration level. Overall, it was determined that when either hydrated or dehydrated, KCHA had the highest conductivity and lowest cation migration activation energy of the three studied chabazites and thus has the most promising electrical properties for potential use as a gas sensing material in next-generation electrical-based gas sensors.</p

    Novel low energy hydrogen–deuterium isotope breakthrough separation using a trapdoor zeolite

    Get PDF
    AbstractCs-chabazite, a type of zeolite with caesium counter-cations, possesses interesting gas separation properties due to a highly selective molecular “trapdoor” effect. Herein the use of this material for H2/D2 isotope separation is demonstrated. Isotope separation was achieved using breakthrough separation with a single pass through a packed bed at moderate temperatures (293K) and pressures (0.17MPa) when one species was in a sufficiently low concentration. The breakthrough separation curves were successfully modelled using the Thomas kinetic breakthrough model and the Yoon and Nelson kinetic breakthrough model, where working transferable kinetic rate constants were developed. Use of this material for hydrogen isotope separation would significantly lower the total energy demand compared with current hydrogen isotope separation techniques such as cryogenic distillation and is applicable to separating out low concentrations of D2 (0.0156%) present in standard grade H2

    Short term soy consumption affects working memory in your females

    Get PDF
    Synthetic K+ chabazite (KCHA), Cs+ chabazite (CsCHA) and Zn2+ chabazite (ZnCHA) have been synthesized and investigated in order to relate the differences in their crystalline structures to their thermal stability, moisture content and frequency dependent alternating current (AC) conductivity, permittivity and phase angle at a range of temperatures. The materials are shown to exhibit the universal dielectric response, which is typical of materials consisting of both conductive and insulating regions. Due to the presence of porosity, the three chabazites were hydrated significantly at room temperature and so the dehydrated state was achieved by heating the chabazites to high temperatures to ensure that all different energetic types of water were removed. Cation migration activation energies for KCHA (0.66 ± 0.10) eV, CsCHA (0.88 ± 0.01) eV and ZnCHA (0.90 ± 0.01) eV were determined during the cooling cycle from the fully dehydrated state to provide an accurate measurement of the activation energies. Good thermal stability of the materials was observed up to 710 °C and below 200 °C the electrical properties can be strongly influenced by hydration level. Overall, it was determined that when either hydrated or dehydrated, KCHA had the highest conductivity and lowest cation migration activation energy of the three studied chabazites and thus has the most promising electrical properties for potential use as a gas sensing material in next-generation electrical-based gas sensors.</p

    Michoacán (Mexico), Paricutin Volcano

    Get PDF
    Paricutin; Uruapan--Mexico City Ry. [railway] 2, 3 Oct 45. Panchromatic Super XX. Paricutin in distance. Red soil & maiz near. 5.6 1/300GrayscalePendleton nitrate negative, Box 230 of 38
    corecore