4 research outputs found

    Heart rate variability changes at 2400 m altitude predicts acute mountain sickness on further ascent at 3000-4300 m altitudes

    Get PDF
    Objective: If the body fails to acclimatize at high altitude, acute mountain sickness (AMS) may result. For the early detection of AMS, changes in cardiac autonomic function measured by heart rate variability (HRV) may be more sensitive than clinical symptoms alone. The purpose of this study was to ascertain if the changes in HRV during ascent are related to AMS. Methods: We followed Lake Louise Score (LLS), arterial oxygen saturation at rest (R-SpO(2)) and exercise (Ex-SpO(2)) and HRV parameters daily in 36 different healthy climbers ascending from 2400 m to 6300 m altitudes during five different expeditions. Results: After an ascent to 2400 m, root mean square successive differences, high-frequency power (HF2 min) of HRV were 17-51% and Ex-SpO(2) was 3% lower in those climbers who suffered from AMS at 3000 to 4300 m than in those only developing AMS later (>= 5000 m) or not at all (all p <0.01). At the altitude of 2400 m RMSSD2 minPeer reviewe

    Clinical Application of Heart Rate Variability after Acute Myocardial Infarction

    Get PDF
    AbstractHeart rate (HR) variability has been extensively studied in patients surviving an acute myocardial infarction (AMI). The majority of studies have shown that patients with reduced or abnormal HR variability/turbulence have an increased risk of mortality within few years after an AMI. Various measures of HR dynamics, such as time-domain, spectral, and non-linear measures of HR variability, as well as HR turbulence, have been used in risk stratification of post-AMI patients. The prognostic power of various measures, except of those reflecting rapid R-R interval oscillations, has been almost identical, albeit some non-linear HR variability measures, such as short-term fractal scaling exponent, and HR turbulence, have provided somewhat better prognostic information than the others. Abnormal HR variability predicts both sudden and non-sudden cardiac death after AMI. Because of remodeling of the arrhythmia substrate after AMI, early measurement of HR variability to identify those at high risk should likely be repeated later in order to assess the risk of fatal arrhythmia events. Future randomized trials using HR variability/turbulence as one of the pre-defined inclusion criteria will show whether routine measurement of HR variability/turbulence will become a routine clinical tool for risk stratification of post-AMI patients
    corecore