10 research outputs found

    Utility of patient-derived lymphoblastoid cell lines as an ex vivo capecitabine sensitivity prediction model for breast cancer patients.

    Get PDF
    Capecitabine is commonly used in treating breast cancer; however, therapeutic response varies among patients and there is no clinically validated model to predict individual outcomes. Here, we investigated whether drug sensitivity quantified in ex vivo patients' blood-derived cell lines can predict response to capecitabine in vivo. Lymphoblastoid cell lines (LCLs) were established from a cohort of metastatic breast cancer patients (n = 53) who were prospectively monitored during treatment with single agent capecitabine at 2000 mg/m2/day. LCLs were treated with increasing concentrations of 5'-DFUR, a major capecitabine metabolite, to assess patients' ex vivo sensitivity to this drug. Subsequently, ex vivo phenotype was compared to observed patient disease response and drug induced-toxicities. We acquired an independent cohort of breast cancer cell lines and LCLs derived from the same donors from ATCC, compared their sensitivity to 5'-DFUR. As seen in the patient population, we observed large inter-individual variability in response to 5'-DFUR treatment in patient-derived LCLs. Patients whose LCLs were more sensitive to 5'-DFUR had a significantly longer median progression free survival (9-month vs 6-month, log rank p-value = 0.017). In addition, this significant positive correlation for 5'-DFUR sensitivity was replicated in an independent cohort of 8 breast cancer cell lines and LCLs derived from the same donor. Our data suggests that at least a portion of the individual sensitivity to capecitabine is shared between germline tissue and tumor tissue. It also supports the utility of patient-derived LCLs as a predictive model for capecitabine treatment efficacy in breast cancer patients

    Recent advances in systemic therapy: Advances in systemic therapy for HER2-positive metastatic breast cancer

    Get PDF
    Human epidermal growth factor receptor (HER)2 over-expression is associated with a shortened disease-free interval and poor survival. Although the addition of trastuzumab to chemotherapy in the first-line setting has improved response rates, progression-free survival, and overall survival, response rates declined when trastuzumab was used beyond the first-line setting because of multiple mechanisms of resistance. Studies have demonstrated the clinical utility of continuing trastuzumab beyond progression, and further trials to explore this concept are ongoing. New tyrosine kinase inhibitors, monoclonal antibodies, PTEN (phosphatase and tensin homolog) pathway regulators, HER2 antibody-drug conjugates, and inhibitors of heat shock protein-90 are being evaluated to determine whether they may have a role to play in treating trastuzumab-resistant metastatic breast cancer
    corecore