132 research outputs found
Impact analysis of actuator torque degradation on the IRB 120 robot performance using simscape-based model
Actuators in a robot system may become faulty during their life cycle. Locked joints, free-moving joints, and the loss of actuator torque are common faulty types of robot joints where the actuators fail. Locked and free-moving joint issues are addressed by many published articles, whereas the actuator torque loss still opens attractive investigation challenges. The objectives of this study are to classify the loss of robot actuator torque, named actuator torque degradation, into three different cases: Boundary degradation of torque, boundary degradation of torque rate, and proportional degradation of torque, and to analyze their impact on the performance of a typical 6-DOF robot (i.e., the IRB 120 robot). Typically, controllers of robots are not pre-designed specifically for anticipating these faults. To isolate and focus on the impact of only actuator torque degradation faults, all robot parameters are assumed to be known precisely, and a popular closed-loop controller is used to investigate the robot’s responses under these faults. By exploiting MATLAB-the reliable simulation environment, a simscape-based quasi-physical model of the robot is built and utilized instead of an actual expensive prototype. The simulation results indicate that the robot responses cannot follow the desired path properly in most fault cases
On tracking control problem for polysolenoid motor model predictive approach
The Polysolenoid Linear Motor (PLM) have been playing a crucial role in many industrial aspects due to its functions, in which a straight motion is provided directly without mediate mechanical actuators. Recently, with several commons on mathematic model, some control methods for PLM based on Rotational Motor have been applied, but position, velocity and current constraints which are important in real systems have been ignored. In this paper, position tracking control problem for PLM was considered under state-independent disturbances via min-max model predictive control. The proposed controller forces tracking position errors converge to small region of origin and satisfies state including position, velocity and currents constraints. Further, a numerical simulation was implemented to validate the performance of the proposed controller
Multi parametric model predictive control based on laguerre model for permanent magnet linear synchronous motors
The permanent magnet linear motors are widely used in various industrial applications due to its advantages in comparisons with rotary motors such as mechanical durability and directly creating linear motions without gears or belts. The main difficulties of its control design are that the control performances include the tracking of position and velocity as well as guarantee limitations of the voltage control and its variation. In this work, a cascade control strategy including an inner and an outer loop is applied to synchronous linear motor. Particularly, an offline MPC controller based on MPP method and Laguerre model was proposed for inner loop and the outer controller was designed with the aid of nonlinear damping method. The numerical simulation was implemented to validate performance of the proposed controller under voltage input constraints
Review paper: General overview of control problems in wind power plants
Wind power plants can be realized with different generator types using different control principles. The choice of the generator regardless of the control method, potentially destabilizes the grid, and can even lead to grid collapse. For independent grid (e.g. on islands) this risk is especially great. The report aimed at giving the reader a general overview of the control methods, and the developers a better  understanding of each generator type to get the right choice for their wind power project
Stochastic control for optimal power flow in islanded microgrid
The problem of optimal power flow (OPF) in an islanded mircrogrid (MG) for hybrid power system is described. Clearly, it deals with a formulation of an analytical control model for OPF. The MG consists of wind turbine generator, photovoltaic generator, and diesel engine generator (DEG), and is in stochastic environment such as load change, wind power fluctuation, and sun irradiation power disturbance. In fact, the DEG fails and is repaired at random times so that the MG can significantly influence the power flow, and the power flow control faces the main difficulty that how to maintain the balance of power flow? The solution is that a DEG needs to be scheduled. The objective of the control problem is to find the DEG output power by minimizing the total cost of energy. Adopting the Rishel’s famework and using the Bellman principle, the optimality conditions obtained satisfy the Hamilton-Jacobi-Bellman equation. Finally, numerical examples and sensitivity analyses are included to illustrate the importance and effectiveness of the proposed model
DYNAMIC MODEL WITH A NEW FORMULATION OF CORIOLIS/CENTRIFUGAL MATRIX FOR ROBOT MANIPULATORS
The paper presents a complete generalized procedure based on the Euler-Lagrange equations to build the matrix form of dynamic equations, called dynamic model, for robot manipulators. In addition, a new formulation of the Coriolis/centrifugal matrix is proposed. The link linear and angular velocities are formulated explicitly. Therefore, the translational and rotational Jacobian matrices can be derived straightforward from definition, which makes the calculation of the generalized inertia matrix more convenient. By using Kronecker product, a new Coriolis/centrifugal matrix formulation is set up directly in matrix-based manner and guarantees the skew symmetry property of robot dynamic equations. This important property is usually exploited for developing many control methodologies. The validation of the proposal formulation is confirmed through the symbolic solution and simulation of a typical robot manipulator
Partial Underpinning a Five-Storey Building
Partial underpinning is often not accepted because of dangerous damage that may be caused by the redistribution of stresses in the superstructure. A five-storey building was partially underpinned successfully. To give stability to the building only a small number of piles, about 70% fewer than with the conventional method, were used. The results observed have proved the success of the partial underpinning
- …