11 research outputs found

    Modeling of Thermal-Lag Engine with Validation by Experimental Data

    No full text
    Thermal-lag engines are external combustion engines with a single moving piston. This feature leads to lower manufacturing and maintenance costs than traditional Stirling engines. Although the original concept of thermal-lag engines was invented roughly 35 years ago, the information on thermal-lag engines is still limited. Therefore, this study focuses on thermal-lag engine performance by developing a three-dimensional computational fluid dynamics (CFD) model. The grid independence check and the time step independence check are firstly performed to select the number of elements and size of the time step for simulation. The CFD model is then validated by the experimental data, which were collected by measuring an existing prototype engine. It has been found that the CFD predictions are well fitted to the experimental data over the range of engine speed from 200 to 1600 rpm at temperatures of 1173 or 1273 K. Furthermore, the CFD model predicts that the maximum engine power is 21.1 W while the prototype engine practically generates the highest power of 22.35 W at 1000 rpm and 1273 K. Finally, a further parametric study shows that crank radius, piston diameter, working gas mass, working gas species, and heating temperature significantly affect engine power

    Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method

    No full text
    This study focuses on optimizing a 100-W-class β-Type Stirling engine by combining the modified thermodynamic model and the variable-step simplified conjugate gradient (VSCGM) method. For the modified thermodynamic model, non-uniform pressure is directly introduced into the energy equation, so the indicated power and heat transfer rates can reach energy balance while the VSCGM is an updated version of the simplified conjugate gradient method (SCGM) with adaptive increments and step lengths to the optimization process; thus, it requires fewer iterations to reach the optimal solution than the SCGM. For the baseline case, the indicated power progressively raises from 88.2 to 210.2 W and the thermal efficiency increases from 34.8 to 46.4% before and after optimization, respectively. The study shows the VSCGM possesses robust property. All optimal results from the VSCGM are well-matched with those of the computational fluid dynamics (CFD) model. Heating temperature and rotation speed have positive effects on optimal engine performance. The optimal indicated power rises linearly with the charged pressure, whereas the optimal thermal efficiency tends to decrease. The study also points out that results of the modified thermodynamic model with fixed values of unknowns agree well with the CFD results at points far from the baseline case

    Modeling of Thermal-Lag Engine with Validation by Experimental Data

    No full text
    Thermal-lag engines are external combustion engines with a single moving piston. This feature leads to lower manufacturing and maintenance costs than traditional Stirling engines. Although the original concept of thermal-lag engines was invented roughly 35 years ago, the information on thermal-lag engines is still limited. Therefore, this study focuses on thermal-lag engine performance by developing a three-dimensional computational fluid dynamics (CFD) model. The grid independence check and the time step independence check are firstly performed to select the number of elements and size of the time step for simulation. The CFD model is then validated by the experimental data, which were collected by measuring an existing prototype engine. It has been found that the CFD predictions are well fitted to the experimental data over the range of engine speed from 200 to 1600 rpm at temperatures of 1173 or 1273 K. Furthermore, the CFD model predicts that the maximum engine power is 21.1 W while the prototype engine practically generates the highest power of 22.35 W at 1000 rpm and 1273 K. Finally, a further parametric study shows that crank radius, piston diameter, working gas mass, working gas species, and heating temperature significantly affect engine power

    The decline of malaria in Vietnam, 1991–2014

    No full text
    Abstract Background Despite the well-documented clinical efficacy of artemisinin-based combination therapy (ACT) against malaria, the population-level effects of ACT have not been studied thoroughly until recently. An ideal case study for these population-level effects can be found in Vietnam’s gradual adoption of artemisinin in the 1990s. Methods and results Analysis of Vietnam’s national annual malaria reports (1991–2014) revealed that a 10% increase in artemisinin procurement corresponded to a 32.8% (95% CI 27.7–37.5%) decline in estimated malaria cases. There was no consistent national or regional effect of vector control on malaria. The association between urbanization and malaria was generally negative and sometimes statistically significant. Conclusions The decline of malaria in Vietnam can largely be attributed to the adoption of artemisinin-based case management. Recent analyses from Africa showed that insecticide-treated nets had the greatest effect on lowering malaria prevalence, suggesting that the success of interventions is region-specific. Continuing malaria elimination efforts should focus on both vector control and increased access to ACT

    A randomized comparison of Chloroquine versus Dihydroartemisinin-Piperaquine for the treatment of Plasmodium vivax infection in Vietnam

    No full text
    A total of 128 Vietnamese patients with symptomatic Plasmodium vivax mono-infections were enrolled in a prospective, open-label, randomized trial to receive either chloroquine or dihydroartemisinin–piperaquine (DHA-PPQ). The proportions of patients with adequate clinical and parasitological responses were 47% in the chloroquine arm (31 of 65 patients) and 66% in the DHA-PPQ arm (42 of 63 patients) in the Kaplan–Meier intention-to-treat analysis (absolute difference 19%, 95% confidence interval = 0–37%), thus establishing non-inferiority of DHA-PPQ. Fever clearance time (median 24 versus 12 hours, P = 0.02), parasite clearance time (median 36 versus 18 hours, P < 0.001), and parasite clearance half-life (mean 3.98 versus 1.80 hours, P < 0.001) were all significantly shorter in the DHA-PPQ arm. All cases of recurrent parasitemia in the chloroquine arm occurred from day 33 onward, with corresponding whole blood chloroquine concentration lower than 100 ng/mL in all patients. Chloroquine thus remains efficacious for the treatment of P. vivax malaria in southern Vietnam, but DHA-PPQ provides more rapid symptomatic and parasitological recovery
    corecore