7 research outputs found

    Trauma lurking in the shadows: A Reddit case study of mental health issues in online posts about Childhood Sexual Abuse

    Full text link
    Childhood Sexual Abuse (CSA) is a menace to society and has long-lasting effects on the mental health of the survivors. From time to time CSA survivors are haunted by various mental health issues in their lifetime. Proper care and attention towards CSA survivors facing mental health issues can drastically improve the mental health conditions of CSA survivors. Previous works leveraging online social media (OSM) data for understanding mental health issues haven't focused on mental health issues in individuals with CSA background. Our work fills this gap by studying Reddit posts related to CSA to understand their mental health issues. Mental health issues such as depression, anxiety, and Post-Traumatic Stress Disorder (PTSD) are most commonly observed in posts with CSA background. Observable differences exist between posts related to mental health issues with and without CSA background. Keeping this difference in mind, for identifying mental health issues in posts with CSA exposure we develop a two-stage framework. The first stage involves classifying posts with and without CSA background and the second stage involves recognizing mental health issues in posts that are classified as belonging to CSA background. The top model in the first stage is able to achieve accuracy and f1-score (macro) of 96.26% and 96.24%. and in the second stage, the top model reports hamming score of 67.09%. Content Warning: Reader discretion is recommended as our study tackles topics such as child sexual abuse, molestation, etc

    Transforming the Embeddings: A Lightweight Technique for Speech Emotion Recognition Tasks

    Full text link
    Speech emotion recognition (SER) is a field that has drawn a lot of attention due to its applications in diverse fields. A current trend in methods used for SER is to leverage embeddings from pre-trained models (PTMs) as input features to downstream models. However, the use of embeddings from speaker recognition PTMs hasn't garnered much focus in comparison to other PTM embeddings. To fill this gap and in order to understand the efficacy of speaker recognition PTM embeddings, we perform a comparative analysis of five PTM embeddings. Among all, x-vector embeddings performed the best possibly due to its training for speaker recognition leading to capturing various components of speech such as tone, pitch, etc. Our modeling approach which utilizes x-vector embeddings and mel-frequency cepstral coefficients (MFCC) as input features is the most lightweight approach while achieving comparable accuracy to previous state-of-the-art (SOTA) methods in the CREMA-D benchmark.Comment: Accepted to Interspeech 202

    A Lightweight Feature Fusion Architecture For Resource-Constrained Crowd Counting

    Full text link
    Crowd counting finds direct applications in real-world situations, making computational efficiency and performance crucial. However, most of the previous methods rely on a heavy backbone and a complex downstream architecture that restricts the deployment. To address this challenge and enhance the versatility of crowd-counting models, we introduce two lightweight models. These models maintain the same downstream architecture while incorporating two distinct backbones: MobileNet and MobileViT. We leverage Adjacent Feature Fusion to extract diverse scale features from a Pre-Trained Model (PTM) and subsequently combine these features seamlessly. This approach empowers our models to achieve improved performance while maintaining a compact and efficient design. With the comparison of our proposed models with previously available state-of-the-art (SOTA) methods on ShanghaiTech-A ShanghaiTech-B and UCF-CC-50 dataset, it achieves comparable results while being the most computationally efficient model. Finally, we present a comparative study, an extensive ablation study, along with pruning to show the effectiveness of our models

    Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle Routing Problem with Time Windows

    Full text link
    The well-known Vehicle Routing Problem with Time Windows (VRPTW) aims to reduce the cost of moving goods between several destinations while accommodating constraints like set time windows for certain locations and vehicle capacity. Applications of the VRPTW problem in the real world include Supply Chain Management (SCM) and logistic dispatching, both of which are crucial to the economy and are expanding quickly as work habits change. Therefore, to solve the VRPTW problem, metaheuristic algorithms i.e. Particle Swarm Optimization (PSO) have been found to work effectively, however, they can experience premature convergence. To lower the risk of PSO's premature convergence, the authors have solved VRPTW in this paper utilising a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO). Computing experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature. Also, comparisons with two cutting-edge algorithms from the literature show how competitive the suggested algorithm is

    From Simulations to Reality: Enhancing Multi-Robot Exploration for Urban Search and Rescue

    Full text link
    In this study, we present a novel hybrid algorithm, combining Levy Flight (LF) and Particle Swarm Optimization (PSO) (LF-PSO), tailored for efficient multi-robot exploration in unknown environments with limited communication and no global positioning information. The research addresses the growing interest in employing multiple autonomous robots for exploration tasks, particularly in scenarios such as Urban Search and Rescue (USAR) operations. Multiple robots offer advantages like increased task coverage, robustness, flexibility, and scalability. However, existing approaches often make assumptions such as search area, robot positioning, communication restrictions, and target information that may not hold in real-world situations. The hybrid algorithm leverages LF, known for its effectiveness in large space exploration with sparse targets, and incorporates inter-robot repulsion as a social component through PSO. This combination enhances area exploration efficiency. We redefine the local best and global best positions to suit scenarios without continuous target information. Experimental simulations in a controlled environment demonstrate the algorithm's effectiveness, showcasing improved area coverage compared to traditional methods. In the process of refining our approach and testing it in complex, obstacle-rich environments, the presented work holds promise for enhancing multi-robot exploration in scenarios with limited information and communication capabilities

    Detecting Substance Use Disorder using Social Media Data and Dark Web: Time and Knowledge aware Study

    Get PDF
    Opioid and substance misuse is rampant in the United States today, with the phenomenon known as the opioid crisis . The relationship between substance use and mental health has been extensively studied, with one possible relationship being: substance misuse causes poor mental health. However, the lack of evidence on the relationship has resulted in opioids being largely inaccessible through legal means. This study analyzes the substance use posts on social media with opioids being sold through crypto market listings. We use the Drug Abuse Ontology, state-of-the-art deep learning, and knowledge-aware BERT-based models to generate sentiment and emotion for the social media posts to understand users\u27 perceptions on social media by investigating questions such as: which synthetic opioids people are optimistic, neutral, or negative about? or what kind of drugs induced fear and sorrow? or what kind of drugs people love or are thankful about? or which drugs people think negatively about? or which opioids cause little to no sentimental reaction. We discuss how we crawled crypto market data and its use in extracting posts for fentanyl, fentanyl analogs, and other novel synthetic opioids. We also perform topic analysis associated with the generated sentiments and emotions to understand which topics correlate with people\u27s responses to various drugs. Additionally, we analyze time-aware neural models built on these features while considering historical sentiment and emotional activity of posts related to a drug. The most effective model performs well (statistically significant) with (macroF1=82.12, recall =83.58) to identify substance use disorder

    An Automated Stress Recognition for Digital Healthcare: Towards E-Governance

    No full text
    Mental health is of utmost importance in present times as mental health problems can have a negative impact on an individual. Stress recognition is an important part of the digital healthcare system as stress may act as a catalyst and lead to mental health problems or further amplify them. With the advancement of technology, the presence of smart wearable devices is seen and it can be used to automate stress recognition for digital healthcare. These smart wearable devices have physiological sensors embedded into them. The data collected from these physiological sensors have paved an efficient way for stress recognition in the user. Most of the previous work related to stress recognition was done using classical machine learning approaches. One of the major drawbacks related to these approaches is that they require manually extracting important features that will be helpful in stress recognition. Extracting these features requires human domain expertise. Another drawback of previous works was that it only caters to specific groups of individuals such as stress among youths, stress due to the workplace, etc. and fails to generalize. To overcome the issues related to previous works done, this study proposes a transformer-based deep learning approach for automating the feature extraction phase and classifying a user’s state into three classes baseline, stress, and amusement
    corecore