11 research outputs found

    EXTRACTION AND PROPERTY STUDIES OF COENZYME Q10 FROM RECOMBINANT AGROBACTERIUM TUMEFACIENS

    Get PDF
    In this report, some results of extraction and characterization of CoQ10 from recombinant A. tumefaciens are presented. Four different cell breaking methods (sonication, acidic treatment, ethanol treatment, and enzymatic lysis) in combination with the extracting steps were carried out to extract CoQ10 and the results showed that ethanol treatment was the most efficient method. Appropriate conditions for CoQ10 extraction were 25 oC, 24 hours incubation and ethanol solvent/biomass ratio of 10:1 (ml/g). Characterization of extracted CoQ10 showed that CoQ10 was sensitive to light, but stable in the temperature ranges of 4 – 60 oC and the pH range of 6.0 – 9.0. Obtained results in present study should be applied in the large scale for CoQ10 extraction, providing the CoQ10 product for testing production of functional foods

    A joint numerical study of multi-regime turbulent combustion

    Get PDF
    This article presents a joint numerical study on the Multi Regime Burner configuration. The burner design consists of three concentric inlet streams, which can be operated independently with different equivalence ratios, allowing the operation of stratified flames characterized by different combustion regimes, including premixed, non-premixed, and multi-regime flame zones. Simulations were performed on three LES solvers based on different numerical methods. Combustion kinetics were simplified by using tabulated or reduced chemistry methods. Finally, different turbulent combustion modeling strategies were employed, covering geometrical, statistical, and reactor based approaches. Due to this significant scattering of simulation parameters, a conclusion on specific combustion model performance is impossible. However, with ten numerical groups involved in the numerical simulations, a rough statistical analysis is conducted: the average and the standard deviation of the numerical simulation are computed and compared against experiments. This joint numerical study is therefore a partial illustration of the community's ability to model turbulent combustion. This exercise gives the average performance of current simulations and identifies physical phenomena not well captured today by most modeling strategies. Detailed comparisons between experimental and numerical data along radial profiles taken at different axial positions showed that the temperature field is fairly well captured up to 60 mm from the burner exit. The comparison reveals, however, significant discrepancies regarding CO mass fraction prediction. Three causes may explain this phenomenon. The first reason is the higher sensitivity of carbon monoxide to the simplification of detailed chemistry, especially when multiple combustion regimes are encountered. The second is the bias introduced by artificial thickening, which overestimates the species’ mass production rate. This behavior has been illustrated by manufacturing mean thickened turbulent flame brush from a random displacement of 1-D laminar flame solutions. The last one is the influence of the subgrid-scale flame wrinkling on the filtered chemical flame structure, which may be challenging to model.</p

    A joint numerical study of multi-regime turbulent combustion

    Get PDF
    This article presents a joint numerical study on the Multi Regime Burner configuration. The burner design consists of three concentric inlet streams, which can be operated independently with different equivalence ratios, allowing the operation of stratified flames characterized by different combustion regimes, including premixed, non-premixed, and multi-regime flame zones. Simulations were performed on three LES solvers based on different numerical methods. Combustion kinetics were simplified by using tabulated or reduced chemistry methods. Finally, different turbulent combustion modeling strategies were employed, covering geometrical, statistical, and reactor based approaches. Due to this significant scattering of simulation parameters, a conclusion on specific combustion model performance is impossible. However, with ten numerical groups involved in the numerical simulations, a rough statistical analysis is conducted: the average and the standard deviation of the numerical simulation are computed and compared against experiments. This joint numerical study is therefore a partial illustration of the community's ability to model turbulent combustion. This exercise gives the average performance of current simulations and identifies physical phenomena not well captured today by most modeling strategies. Detailed comparisons between experimental and numerical data along radial profiles taken at different axial positions showed that the temperature field is fairly well captured up to 60 mm from the burner exit. The comparison reveals, however, significant discrepancies regarding CO mass fraction prediction. Three causes may explain this phenomenon. The first reason is the higher sensitivity of carbon monoxide to the simplification of detailed chemistry, especially when multiple combustion regimes are encountered. The second is the bias introduced by artificial thickening, which overestimates the species’ mass production rate. This behavior has been illustrated by manufacturing mean thickened turbulent flame brush from a random displacement of 1-D laminar flame solutions. The last one is the influence of the subgrid-scale flame wrinkling on the filtered chemical flame structure, which may be challenging to model.</p

    Evaluation of awake prone positioning effectiveness in moderate to severe COVID-19

    Get PDF
    Evidence mainly from high income countries suggests that lying in the prone position may be beneficial in patients with COVID-19 even if they are not receiving invasive ventilation. Studies indicate that increased duration of prone position may be associated with improved outcomes, but achieving this requires additional staff time and resources. Our study aims to support prolonged (≥ 8hours/day) awake prone positioning in patients with moderate to severe COVID-19 disease in Vietnam. We use a specialist team to support prone positioning of patients and wearable devices to assist monitoring vital signs and prone position and an electronic data registry to capture routine clinical data

    Regularization and error estimates for asymmetric backward nonhomogeneous heat equations in a ball

    No full text
    The backward heat problem (BHP) has been researched by many authors in the last five decades; it consists in recovering the initial distribution from the final temperature data. There are some articles [1,2,3] related the axi-symmetric BHP in a disk but the study in spherical coordinates is rare. Therefore, we wish to study a backward problem for nonhomogenous heat equation associated with asymmetric final data in a ball. In this article, we modify the quasi-boundary value method to construct a stable approximate solution for this problem. As a result, we obtain regularized solution and a sharp estimates for its error. At the end, a numerical experiment is provided to illustrate our method

    Fabrication of SiO2/PEGDA Inverse Opal Photonic Crystal with Fluorescence Enhancement Effects

    No full text
    The present paper reports the fabrication of inverse opal photonic crystals (IOPCs) by using SiO2 spherical particles with a diameter of 300 nm as an opal photonic crystal template and poly(ethylene glycol) diacrylate (PEGDA) as an inverse opal material. Characteristics and fluorescence properties of the fabricated IOPCs were investigated by using the Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), reflection spectroscopy, and fluorescence microscopy. The results clearly showed that the IOPCs were formed comprising of air spheres with a diameter of ∼270 nm. The decrease in size led to a decrease in the average refractive indexes from 1.40 to 1.12, and a remarkable stopband blue shift for the IOPCs was thus achieved. In addition, the obtained results also showed a fluorescence enhancement over 7.7-fold for the Fluor® 488 dye infiltrated onto the IOPCs sample in comparison with onto the control sample

    Clinical benefit of AI-assisted lung ultrasound in a resource-limited intensive care unit

    No full text
    corecore