714 research outputs found
Spherical Code Key Distribution Protocols for Qubits
Recently spherical codes were introduced as potentially more capable
ensembles for quantum key distribution. Here we develop specific key creation
protocols for the two qubit-based spherical codes, the trine and tetrahedron,
and analyze them in the context of a suitably-tailored intercept/resend attack,
both in standard form, and a ``gentler'' version whose back-action on the
quantum state is weaker. When compared to the standard unbiased basis
protocols, BB84 and six-state, two distinct advantages are found. First, they
offer improved tolerance of eavesdropping, the trine besting its counterpart
BB84 and the tetrahedron the six-state protocol. Second, the key error rate may
be computed from the sift rate of the protocol itself, removing the need to
sacrifice key bits for this purpose. This simplifies the protocol and improves
the overall key rate.Comment: 4 pages revtex, 2 figures; clarified security analysis. Final version
for publicatio
Security against eavesdropping in quantum cryptography
In this article we deal with the security of the BB84 quantum cryptography
protocol over noisy channels using generalized privacy amplification. For this
we estimate the fraction of bits needed to be discarded during the privacy
amplification step. This estimate is given for two scenarios, both of which
assume the eavesdropper to access each of the signals independently and take
error correction into account. One scenario does not allow a delay of the
eavesdropper's measurement of a measurement probe until he receives additional
classical information. In this scenario we achieve a sharp bound. The other
scenario allows a measurement delay, so that the general attack of an
eavesdropper on individual signals is covered. This bound is not sharp but
allows a practical implementation of the protocol.Comment: 11 pages including 3 figures, contains new results not contained in
my Phys. Rev. A pape
Higher Security Thresholds for Quantum Key Distribution by Improved Analysis of Dark Counts
We discuss the potential of quantum key distribution (QKD) for long distance
communication by proposing a new analysis of the errors caused by dark counts.
We give sufficient conditions for a considerable improvement of the key
generation rates and the security thresholds of well-known QKD protocols such
as Bennett-Brassard 1984, Phoenix-Barnett-Chefles 2000, and the six-state
protocol. This analysis is applicable to other QKD protocols like Bennett 1992.
We examine two scenarios: a sender using a perfect single-photon source and a
sender using a Poissonian source.Comment: 6 pages, 2 figures, v2: We obtained better results by using reverse
reconciliation as suggested by Nicolas Gisi
Atom-photon entanglement generation and distribution
We extend an earlier model by Law {\it et al.} \cite{law} for a cavity QED
based single-photon-gun to atom-photon entanglement generation and
distribution. We illuminate the importance of a small critical atom number on
the fidelity of the proposed operation in the strong coupling limit. Our result
points to a promisingly high purity and efficiency using currently available
cavity QED parameters, and sheds new light on constructing quantum computing
and communication devices with trapped atoms and high Q optical cavities.Comment: 7 fig
Security proof of a three-state quantum key distribution protocol without rotational symmetry
Standard security proofs of quantum key distribution (QKD) protocols often
rely on symmetry arguments. In this paper, we prove the security of a
three-state protocol that does not possess rotational symmetry. The three-state
QKD protocol we consider involves three qubit states, where the first two
states, |0_z> and |1_z>, can contribute to key generation and the third state,
|+>=(|0_z>+|1_z>)/\sqrt{2}, is for channel estimation. This protocol has been
proposed and implemented experimentally in some frequency-based QKD systems
where the three states can be prepared easily. Thus, by founding on the
security of this three-state protocol, we prove that these QKD schemes are, in
fact, unconditionally secure against any attacks allowed by quantum mechanics.
The main task in our proof is to upper bound the phase error rate of the qubits
given the bit error rates observed. Unconditional security can then be proved
not only for the ideal case of a single-photon source and perfect detectors,
but also for the realistic case of a phase-randomized weak coherent light
source and imperfect threshold detectors. Our result on the phase error rate
upper bound is independent of the loss in the channel. Also, we compare the
three-state protocol with the BB84 protocol. For the single-photon source case,
our result proves that the BB84 protocol strictly tolerates a higher quantum
bit error rate than the three-state protocol; while for the coherent-source
case, the BB84 protocol achieves a higher key generation rate and secure
distance than the three-state protocol when a decoy-state method is used.Comment: 10 pages, 3 figures, 2 column
Burst avalanches in solvable models of fibrous materials
We review limiting models for fracture in bundles of fibers, with
statistically distributed thresholds for breakdown of individual fibers. During
the breakdown process, avalanches consisting of simultaneous rupture of several
fibers occur, and the distribution of the magnitude of
such avalanches is the central characteristics in our analysis. For a bundle of
parallel fibers two limiting models of load sharing are studied and contrasted:
the global model in which the load carried by a bursting fiber is equally
distributed among the surviving members, and the local model in which the
nearest surviving neighbors take up the load. For the global model we
investigate in particular the conditions on the threshold distribution which
would lead to anomalous behavior, i.e. deviations from the asymptotics
, known to be the generic behavior. For the local
model no universal power-law asymptotics exists, but we show for a particular
threshold distribution how the avalanche distribution can nevertheless be
explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure
Unambiguous Discrimination Between Linearly Dependent States with Multiple Copies
A set of quantum states can be unambiguously discriminated if and only if
they are linearly independent. However, for a linearly dependent set, if C
copies of the state are available, then the resulting C particle states may
form a linearly independent set, and be amenable to unambiguous discrimination.
We obtain necessary and sufficient conditions for the possibility of
unambiguous discrimination between N states given that C copies are available
and that the single copies span a D dimensional space. These conditions are
found to be identical for qubits. We then examine in detail the linearly
dependent trine ensemble. The set of C>1 copies of each state is a set of
linearly independent lifted trine states. The maximum unambiguous
discrimination probability is evaluated for all C>1 with equal a priori
probabilities.Comment: 12 Pages RevTeX 4, 1 EPS figur
Exciton entanglement in two coupled semiconductor microcrystallites
Entanglement of the excitonic states in the system of two coupled
semiconductor microcrystallites, whose sizes are much larger than the Bohr
radius of exciton in bulk semiconductor but smaller than the relevant optical
wavelength, is quantified in terms of the entropy of entanglement. It is
observed that the nonlinear interaction between excitons increases the maximum
values of the entropy of the entanglement more than that of the linear coupling
model. Therefore, a system of two coupled microcrystallites can be used as a
good source of entanglement with fixed exciton number. The relationship between
the entropy of the entanglement and the population imbalance of two
microcrystallites is numerically shown and the uppermost envelope function for
them is estimated by applying the Jaynes principle.Comment: 16 pages, 6 figure
Quantum Cryptography with Coherent States
The safety of a quantum key distribution system relies on the fact that any
eavesdropping attempt on the quantum channel creates errors in the
transmission. For a given error rate, the amount of information that may have
leaked to the eavesdropper depends on both the particular system and the
eavesdropping strategy. In this work, we discuss quantum cryptographic
protocols based on the transmission of weak coherent states and present a new
system, based on a symbiosis of two existing ones, and for which the
information available to the eavesdropper is significantly reduced. This system
is therefore safer than the two previous ones. We also suggest a possible
experimental implementation.Comment: 20 pp. Revtex, Figures available from the authors upon request, To be
published in PRA (March 95
- …