42 research outputs found

    An Auto-Generated Geometry-Based Discrete Finite Element Model for Damage Evolution in Composite Laminates with Arbitrary Stacking Sequence

    Full text link
    Stiffness degradation and progressive failure of composite laminates are complex processes involving evolution and multi-mode interactions among fiber fractures, intra-ply matrix cracks and inter-ply delaminations. This paper presents a novel finite element model capable of explicitly treating such discrete failures in laminates of random layup. Matching of nodes is guaranteed at potential crack bifurcations to ensure correct displacement jumps near crack tips and explicit load transfer among cracks. The model is entirely geometry-based (no mesh prerequisite) with distinct segments assembled together using surface-based tie constraints, and thus requires no element partitioning or enrichment. Several numerical examples are included to demonstrate the model's ability to generate results that are in qualitative and quantitative agreement with experimental observations on both damage evolution and tensile strength of specimens. The present model is believed unique in realizing simultaneous and accurate coupling of all three types of failures in laminates having arbitrary ply angles and layup

    Analysis of Potential for Titanium Liner Buckling after Proof in a Large Kevlar/Epoxy COPV

    Get PDF
    We analyze the potential for liner buckling in a 40-in Kevlar49/epoxy overwrapped spherical pressure vessel (COPV) due to long, local depressions or valleys in the titanium liner, which appeared after proof testing (autofrettage). We begin by presenting the geometric characteristics of approximately 20 mil (0.02 in.) deep depressions measured by laser profilometry in several vessels. While such depths were more typical, depths of more than 40 mils (0.02 in.) were seen near the equator in one particular vessel. Such depressions are largely the result of overlap of the edges of overwrap bands (with rectangular cross-section prepreg tows) from the first or second wrap patterns particularly where they start and end. We then discuss the physical mechanisms of formation of the depressions during the autofrettage process in terms of uneven void compaction in the overwrap around the tow overlap lines and the resulting 10-fold increase in through-thickness stiffness of the overwrap. We consider the effects of liner plastic yielding mechanisms in the liner on residual bending moments and interface pressures with the overwrap both at the peak proof pressure (approx.6500 psi) and when reducing the pressure to 0 psi. During depressurization the Bauschinger phenomenon becomes very important whereby extensive yielding in tension reduces the magnitude of the yield threshold in compression by 30 to 40%, compared to the virgin annealed state of the liner titanium. In the absence of a depression, the liner is elastically stable in compression even at liner overwrap interface pressures nominally 6 times the approx. 1000 psi interface pressure that exists at 0 psi. Using a model based on a plate-on-an-elastic-foundation, we develop an extensive analysis of the possible destabilizing effects of a frozen-in valley. The analysis treats the modifying effects of the residual bending moments and interface pressures remaining after the proof hold as well as the Bauschinger effect on the compressive yield threshold. The key result is that depression depths of up to 40 mils can be tolerated, but above 40 mils, the Bauschinger effect drives destabilization, and buckling becomes increasingly likely depending on the details of depression formation during autofrettage. It is almost certain that destabilization and buckling will occur for depression depths beyond 55 mils. The main equations and formulas for treating the various phases of depression development and potential buckling, are only briefly outlined in the paper, but are available from the authors

    Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    Get PDF
    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles

    Use of Raman Spectroscopy and Delta Volume Growth from Void Collapse to Assess Overwrap Stress Gradients Compromising the Reliability of Large Kevlar/Epoxy COPVs

    Get PDF
    Composite Overwrapped Pressure Vessels (COPVs) are frequently used for storing pressurized gases aboard spacecraft and aircraft when weight saving is desirable compared to all-metal versions. Failure mechanisms in fibrous COPVs and variability in lifetime can be very different from their metallic counterparts; in the former, catastrophic stress-rupture can occur with virtually no warning, whereas in latter, a leak before burst design philosophy can be implemented. Qualification and certification typically requires only one burst test on a production sample (possibly after several pressure cycles) and the vessel need only meet a design burst strength (the maximum operating pressure divided by a knockdown factor). Typically there is no requirement to assess variability in burst strength or lifetime, much less determine production and materials processing parameters important to control of such variability. Characterizing such variability and its source is crucial to models for calculating required reliability over a given lifetime (e.g. R = 0.9999 for 15 years). In this paper we present a case study of how lack of control of certain process parameters in COPV manufacturing can result in variations among vessels and between production runs that can greatly increase uncertainty and reduce reliability. The vessels considered are 40-inch ( NASA Glenn Research center, Cleveland, OH, 44135 29,500 in3 ) spherical COPVs with a 0.74 in. thick Kevlar49/epoxy overwrap and with a titanium liner of which 34 were originally produced. Two burst tests were eventually performed that unexpectedly differed by almost 5%, and were 10% lower than anticipated from burst tests on 26-inch sister vessels similar in every detail. A major observation from measurements made during proof testing (autofrettage) of the 40-inch vessels was that permanent volume growth from liner yielding varied by a factor of more than two (150 in3 to 360 in3 ), which suggests large differences in the residual stress gradient through their overwraps. This resulted in large uncertainty in true fiber stress ratio (fiber stress at operating pressure divided by fiber stress at burst) which governs lifetime. The vessels were originally designed with tight safety margins, so it became crucial to develop a non-destructive evaluation (NDE) technique to directly measure the overwrap residual stress state of each vessel, and to identify those vessels at highest risk of having poor reliability. This paper describes a Raman Spectroscopy technique for measuring certain patterns of fluctuation in fiber elastic strains over the outside vessel surface (where all but one wrap is exposed at certain locations) that are shown to directly correlate to increased fiber stress ratios and reduced reliability

    Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications

    Get PDF
    Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined

    Bayes Analysis and Reliability Implications of Stress-Rupture Testing a Kevlar/Epoxy COPV using Temperature and Pressure Acceleration

    Get PDF
    Composite Overwrapped Pressure Vessel (COPVs) that have survived a long service time under pressure generally must be recertified before service is extended. Sometimes lifetime testing is performed on an actual COPV in service in an effort to validate the reliability model that is the basis for certifying the continued flight worthiness of its sisters. Currently, testing of such a Kevlar49(registered TradeMark)/epoxy COPV is nearing completion. The present paper focuses on a Bayesian statistical approach to analyze the possible failure time results of this test and to assess the implications in choosing between possible model parameter values that in the past have had significant uncertainty. The key uncertain parameters in this case are the actual fiber stress ratio at operating pressure, and the Weibull shape parameter for lifetime; the former has been uncertain due to ambiguities in interpreting the original and a duplicate burst test. The latter has been uncertain due to major differences between COPVs in the data base and the actual COPVs in service. Any information obtained that clarifies and eliminates uncertainty in these parameters will have a major effect on the predicted reliability of the service COPVs going forward. The key result is that the longer the vessel survives, the more likely the more optimistic stress ratio is correct. At the time of writing, the resulting effect on predicted future reliability is dramatic, increasing it by about one nine , that is, reducing the probability of failure by an order of magnitude. However, testing one vessel does not change the uncertainty on the Weibull shape parameter for lifetime since testing several would be necessary

    A Comparison of Various Stress Rupture Life Models for Orbiter Composite Pressure Vessels and Confidence Intervals

    Get PDF
    In conjunction with a recent NASA Engineering and Safety Center (NESC) investigation of flight worthiness of Kevlar Overwrapped Composite Pressure Vessels (COPVs) on board the Orbiter, two stress rupture life prediction models were proposed independently by Phoenix and by Glaser. In this paper, the use of these models to determine the system reliability of 24 COPVs currently in service on board the Orbiter is discussed. The models are briefly described, compared to each other, and model parameters and parameter uncertainties are also reviewed to understand confidence in reliability estimation as well as the sensitivities of these parameters in influencing overall predicted reliability levels. Differences and similarities in the various models will be compared via stress rupture reliability curves (stress ratio vs. lifetime plots). Also outlined will be the differences in the underlying model premises, and predictive outcomes. Sources of error and sensitivities in the models will be examined and discussed based on sensitivity analysis and confidence interval determination. Confidence interval results and their implications will be discussed for the models by Phoenix and Glaser

    Overview of NASA White Sands Test Facility Composite Overwrapped Pressure Vessel Testing

    Get PDF
    This viewgraph presentation examines the White Sands Test Facility testing of Composite overwrapped pressure vessel (COPV). A COPV is typically a metallic liner overwrapped with a fiber epoxy matrix. There is a weight advantage over the traditional all metal design. The presentation shows pictures of the facilities at White Sands, and then examines some of the testing performed. The tests include fluids compatibility, and Kevlar COPV. Data for the Kevlar tests are given, and an analysis is reviewed. There is also a comparison between Carbon COPVs and the Kevlar COPVs

    Providing Pressurized Gasses to the International Space Station (ISS): Developing a Composite Overwrapped Pressure Vessel (COPV) for the Safe Transport of Oxygen and Nitrogen

    Get PDF
    To supply oxygen and nitrogen to the International Space Station, a COPV tank is being developed to meet requirements beyond that which have been flown. In order to "Ship Full' and support compatibility with a range of launch site operations, the vessel was designed for certification to International Standards (ISO) that have a different approach than current NASA certification approaches. These requirements were in addition to existing NASA certification standards had to be met. Initial risk-reduction development tests have been successful. Qualification is in progress
    corecore