1,542 research outputs found
Gravitational waves from an accreting neutron star with a magnetic mountain
We calculate the amplitude of gravitational waves from a neutron star accreting symmetrically at its magnetic poles. The magnetic field, which is compressed into an equatorial belt during accretion, confines accreted matter in a mountain at the magnetic pole, producing gravitational waves. We compute hydromagnetic equilibria and the corresponding quadrupole moment as a function of the accreted mass, Ma, finding the polarization- and orientation- averaged wave strain at Earth to be h_c = 6.3 × 10^(–25)(M_a/10^(–5)M_☉)(ƒ/0.6kHz)^2(d/1kpc)^(–1) for a range of conditions, where ƒ is the wave frequency and d is the distance to the source. This is ~ 10^2 times greater than previous estimates, which failed to treat the mass-flux distribution self-consistently with respect to flux-freezin
Analysis of the pulsar P-Ṗ distribution
A new technique for the systematic evaluation of models of pulsar period evolution on the basis of a complete observational sample is outlined and applied to the existing incomplete sample. Possible selection effects are discussed. It is concluded that the simple law for the rate of change of period P, Ṗ ∝ P^(2−n) is incompatible with the assumption of stationarity and pulsar ‘death’ at large periods, if n > 2. Models with n < 2, or with n ≳ 2.5 and torque decay on a time-scale of 1 Myr are consistent with the data. Another possibility is that the beaming fraction decreases by a factor ∼5 as a pulsar slows down. A new procedure for deriving a rigorous lower limit to the creation rate of pulsars within the sample is presented, and it is shown that most pulsars appear to be born with large values of Ṗ
Expected characteristics of the subclass of Supernova Gamma-ray Bursts (S-GRBs)
The spatial and temporal coincidence between the gamma-ray burst (GRB) 980425
and supernova (SN) 1998bw has prompted speculation that there exists a class of
GRBs produced by SNe (``S-GRBs''). Robust arguments for the existence of a
relativistic shock have been presented on the basis of radio observations. A
physical model based on the radio observations lead us to propose the following
characteristics of supernovae GRBs (S-GRBs): 1) prompt radio emission and
implied brightness temperature near or below the inverse Compton limit, 2) high
expansion velocity of the optical photosphere as derived from lines widths and
energy release larger than usual, 3) no long-lived X-ray afterglow, and 4) a
single pulse (SP) GRB profile. Radio studies of previous SNe show that only
type Ib and Ic potentially satisfy the first condition. Accordingly we have
investigated proposed associations of GRBs and SNe finding no convincing
evidence (mainly to paucity of data) to confirm any single connection of a SN
with a GRB. If there is a more constraining physical basis for the burst
time-history of S-GRBs beyond that of the SP requirement, we suggest the 1% of
light curves in the BATSE catalogue similar to that of GRB 980425 may
constitute the subclass. Future optical follow-up of bursts with similar
profiles should confirm if such GRBs originate from some fraction of SN type
Ib/Ic.Comment: 11 pages of LaTeX with 1 figure. Submitted to the Astrophysical
Journal Letter
How to Commission, Operate and Maintain a Large Future Accelerator Complex from Far Remote
A study on future large accelerators [1] has considered a facility, which is
designed, built and operated by a worldwide collaboration of equal partner
institutions, and which is remote from most of these institutions. The full
range of operation was considered including commi-ssioning, machine
development, maintenance, trouble shooting and repair. Experience from existing
accele-rators confirms that most of these activities are already performed
'remotely'. The large high-energy physics ex-periments and astronomy projects,
already involve inter-national collaborations of distant institutions. Based on
this experience, the prospects for a machine operated remotely from far sites
are encouraging. Experts from each laboratory would remain at their home
institution but continue to participate in the operation of the machine after
construction. Experts are required to be on site only during initial
commissioning and for par-ticularly difficult problems. Repairs require an
on-site non-expert maintenance crew. Most of the interventions can be made
without an expert and many of the rest resolved with remote assistance. There
appears to be no technical obstacle to controlling an accelerator from a
distance. The major challenge is to solve the complex management and
communication problems.Comment: ICALEPCS 2001 abstract ID No. FRBI001 invited talk submitting author
F. Willeke 5 pages, 1 figur
The Arecibo 430-MHz Intermediate Galactic Latitude Survey: Discovery of Nine Radio Pulsars
We have used the Arecibo Radio Telescope to search for millisecond pulsars in
two intermediate Galactic latitude regions (7 deg < | b | < 20 deg) accessible
to this telescope. For these latitudes the useful millisecond pulsar search
volume achieved by Arecibo's 430-MHz beam is predicted to be maximal. Searching
a total of 130 square degrees, we have discovered nine new pulsars and detected
four previously known objects. We compare the results of this survey with those
of other 430-MHz surveys carried out at Arecibo and of an intermediate latitude
survey made at Parkes that included part of our search area; the latter
independently found two of the nine pulsars we have discovered.
At least six of our discoveries are isolated pulsars with ages between 5 and
300 Myr; one of these, PSR J1819+1305, exhibits very marked and periodic
nulling. We have also found a recycled pulsar, PSR J2016+1948. With a
rotational period of 65 ms, this is a member of a binary system with a 635-day
orbital period. We discuss some of the the properties of this system in detail,
and indicate its potential to provide a test of the Strong Equivalence
Principle. This pulsar and PSR J0407+16, a similar system now being timed at
Arecibo, are by far the best systems known for such a test.Comment: Accepted for publication in ApJ Referee format: 22 pages, 7 figure
The Cosmological Constant and Advanced Gravitational Wave Detectors
Interferometric gravitational wave detectors could measure the frequency
sweep of a binary inspiral [characterized by its chirp mass] to high accuracy.
The observed chirp mass is the intrinsic chirp mass of the binary source
multiplied by , where is the redshift of the source. Assuming a
non-zero cosmological constant, we compute the expected redshift distribution
of observed events for an advanced LIGO detector. We find that the redshift
distribution has a robust and sizable dependence on the cosmological constant;
the data from advanced LIGO detectors could provide an independent measurement
of the cosmological constant.Comment: 13 pages plus 5 figure, LaTeX. Revised and final version, to appear
in Phys. Rev.
Reconstructing the massive black hole cosmic history through gravitational waves
The massive black holes we observe in galaxies today are the natural
end-product of a complex evolutionary path, in which black holes seeded in
proto-galaxies at high redshift grow through cosmic history via a sequence of
mergers and accretion episodes. Electromagnetic observations probe a small
subset of the population of massive black holes (namely, those that are active
or those that are very close to us), but planned space-based gravitational-wave
observatories such as the Laser Interferometer Space Antenna (LISA) can measure
the parameters of ``electromagnetically invisible'' massive black holes out to
high redshift. In this paper we introduce a Bayesian framework to analyze the
information that can be gathered from a set of such measurements. Our goal is
to connect a set of massive black hole binary merger observations to the
underlying model of massive black hole formation. In other words, given a set
of observed massive black hole coalescences, we assess what information can be
extracted about the underlying massive black hole population model. For
concreteness we consider ten specific models of massive black hole formation,
chosen to probe four important (and largely unconstrained) aspects of the input
physics used in structure formation simulations: seed formation, metallicity
``feedback'', accretion efficiency and accretion geometry. For the first time
we allow for the possibility of ``model mixing'', by drawing the observed
population from some combination of the ``pure'' models that have been
simulated. A Bayesian analysis allows us to recover a posterior probability
distribution for the ``mixing parameters'' that characterize the fractions of
each model represented in the observed distribution. Our work shows that LISA
has enormous potential to probe the underlying physics of structure formation.Comment: 24 pages, 16 figures, submitted to Phys. Rev.
Jet Acceleration by Tangled Magnetic Fields
We explore the possibility that extragalactic radio jets might be accelerated
by highly disorganized magnetic fields that are strong enough to dominate the
dynamics until the terminal Lorentz factor is reached. Following the
twin-exhaust model by Blandford & Rees (1974), the collimation under this
scenario is provided by the stratified thermal pressure from an external
medium. The acceleration efficiency then depends on the pressure gradient of
that medium. In order for this mechanism to work there must be continuous
tangling of the magnetic field, changing the magnetic equation of state away
from pure flux freezing (otherwise conversion of Poynting flux to kinetic
energy flux is suppressed). This is a complementary approach to models in which
the plasma is accelerated by large scale ordered fields. We include a simple
prescription for magnetic dissipation, which leads to tradeoffs among
conversion of magnetic energy into bulk kinetic energy, random particle energy,
and radiation. We present analytic dynamical solutions of such jets, assess the
effects of radiation drag, and comment on observational issues, such as the
predicted polarization and synchrotron brightness. Finally, we try to make the
connection to observed radio galaxies and gamma-ray bursts.Comment: 15 pages, 10 figures, accepted for publication in Ap
Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer
The detection of the Cosmic Microwave Background Radiation (CMB) was one of
the most important cosmological discoveries of the last century. With the
development of interferometric gravitational wave detectors, we may be in a
position to detect the gravitational equivalent of the CMB in this century. The
Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic,
making it difficult to distinguish from instrument noise. The contribution from
the CGB can be isolated by cross-correlating the signals from two or more
independent detectors. Here we extend previous studies that considered the
cross-correlation of two Michelson channels by calculating the optimal signal
to noise ratio that can be achieved by combining the full set of interferometry
variables that are available with a six link triangular interferometer. In
contrast to the two channel case, we find that the relative orientation of a
pair of coplanar detectors does not affect the signal to noise ratio. We apply
our results to the detector design described in the Big Bang Observer (BBO)
mission concept study and find that BBO could detect a background with
.Comment: 15 pages, 12 Figure
- …