929 research outputs found
Analysis of three-nucleon forces effects in the system
Using modern nucleon-nucleon interactions in the description of the
nuclear systems the per datum results to be much bigger than one. In
particular it is not possible to reproduce the three- and four-nucleon binding
energies and the scattering length simultaneously. This is one
manifestation of the necessity of including a three-nucleon force in the
nuclear Hamiltonian. In this paper we perform an analysis of some, widely used,
three-nucleon force models. We analyze their capability to describe the
aforementioned quantities and, to improve their description, we propose
modifications in the parametrization of the models. The effects of these new
parametrization are studied in some polarization observables at low energies.Comment: 10 pages, to be published in Few-Body Systems. Presented at the
workshop on "Relativistic Description of Two- and Three-body Systems in
Nuclear Physics" ECT* Trento, 19 - 23 October 200
Selected Topics in Three- and Four-Nucleon Systems
Two different aspects of the description of three- and four-nucleon systems
are addressed. The use of bound state like wave functions to describe
scattering states in collisions at low energies and the effects of some
of the widely used three-nucleon force models in selected polarization
observables in the three- and four-nucleon systems are discussed.Comment: Presented at the 21st European Conference on Few-Body Problems in
Physics, Salamanca, Spain, 30 August - 3 September 201
Modern nuclear force predictions for the neutron-deuteron scattering lengths
The nd doublet and quartet scattering lengths have been calculated based on
the modern NN and 3N interactions. We also studied the effect of the
electromagnetic interactions in the form introduced in AV18. Switching them off
for the various nuclear force models leads to shifts of up to +0.04 fm for
doublet scattering length, which is significant for present day standards. The
electromagnetic effects have also a noticeable effect on quartet scattering
length, which otherwise is extremely stable under the exchange of the nuclear
forces. For the current nuclear force models there is a strong scatter of the
3H binding energy and the doublet scattering length values around an averaged
straight line (Phillips line). This allows to use doublet scattering length and
the 3H binding energy as independent low energy observables.Comment: 16 pages, 1 table, 4 ps figure
Elastic p-3He and n-3H scattering with two- and three-body forces
We report on a microscopic calculation of n-3H and p-3He scattering employing
the Argonne v_{18} and v_8' nucleon-nucleon potentials with and without
additional three-nucleon force. An R-matrix analysis of the p-3He and n-3H
scattering data is presented. Comparisons are made for the phase shifts and a
selection of measurements in both scattering systems. Differences between our
calculation and the R-matrix results or the experimental data can be attributed
to only two partial waves (3P0 and 3P2). We find the effect of the Urbana IX
and the Texas-Los Alamos three-nucleon forces on the phase shifts to be
negligible.Comment: submitted to Phys. Rev.
Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric
Continuing our investigation of the regularization of the noise kernel in
curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001
(2001)] we adopt the modified point separation scheme for the class of optical
spacetimes using the Gaussian approximation for the Green functions a la
Bekenstein-Parker-Page. In the first example we derive the regularized noise
kernel for a thermal field in flat space. It is useful for black hole
nucleation considerations. In the second example of an optical Schwarzschild
spacetime we obtain a finite expression for the noise kernel at the horizon and
recover the hot flat space result at infinity. Knowledge of the noise kernel is
essential for studying issues related to black hole horizon fluctuations and
Hawking radiation backreaction. We show that the Gaussian approximated Green
function which works surprisingly well for the stress tensor at the
Schwarzschild horizon produces significant error in the noise kernel there. We
identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX
Universal Correlations in Pion-less EFT with the Resonating Group Model: Three and Four Nucleons
The Effective Field Theory "without pions" at next-to-leading order is used
to analyze universal bound state and scattering properties of the 3- and
4-nucleon system. Results of a variety of phase shift equivalent nuclear
potentials are presented for bound state properties of 3H and 4He, and for the
singlet S-wave 3He-neutron scattering length a_0(3He-n). The calculations are
performed with the Refined Resonating Group Method and include a full treatment
of the Coulomb interaction and the leading-order 3-nucleon interaction. The
results compare favorably with data and values from AV18(+UIX) model
calculations. A new correlation between a_0(3He-n) and the 3H binding energy is
found. Furthermore, we confirm at next-to-leading order the correlations,
already found at leading-order, between the 3H binding energy and the 3H charge
radius, and the Tjon line. With the 3H binding energy as input, we get
predictions of the Effective Field Theory "without pions" at next-to-leading
order for the root mean square charge radius of 3H of (1.6\pm 0.2) fm, for the
4He binding energy of (28\pm 2.5) MeV, and for Re(a_0(3He-n)) of (7.5\pm
0.6)fm. Including the Coulomb interaction, the splitting in binding energy
between 3H and 3He is found to be (0.66\pm 0.03) MeV. The discrepancy to data
of (0.10\mp 0.03) MeV is model independently attributed to higher order charge
independence breaking interactions. We also demonstrate that different results
for the same observable stem from higher order effects, and carefully assess
that numerical uncertainties are negligible. Our results demonstrate the
convergence and usefulness of the pion-less theory at next-to-leading order in
the 4He channel. We conclude that no 4-nucleon interaction is needed to
renormalize the theory at next-to-leading order in the 4-nucleon sector.Comment: 24 pages revtex4, including 8 figures as .eps files embedded with
includegraphicx, leading-order results added, calculations include the LO
three-nucleon interaction explicitly, comment on Wigner bound added, minor
modification
A Two-Step Quantum Direct Communication Protocol Using Einstein-Podolsky-Rosen Pair Block
A protocol for quantum secure direct communication using blocks of EPR pairs
is proposed. A set of ordered EPR pairs is used as a data block for sending
secret message directly. The ordered EPR set is divided into two particle
sequences, a checking sequence and a message-coding sequence. After
transmitting the checking sequence, the two parties of communication check
eavesdropping by measuring a fraction of particles randomly chosen, with random
choice of two sets of measuring bases. After insuring the security of the
quantum channel, the sender, Alice encodes the secret message directly on the
message-coding sequence and send them to Bob. By combining the checking and
message-coding sequences together, Bob is able to read out the encoded messages
directly. The scheme is secure because an eavesdropper cannot get both
sequences simultaneously. We also discuss issues in a noisy channel.Comment: 8 pages and 2 figures. To appear in Phys Rev
Electromagnetically induced transparency and controlled group velocity in a multilevel system
Published versio
- …