575 research outputs found

    Characterization of Metabolic, Diffusion, and Perfusion Properties in GBM: Contrast-Enhancing versus Non-Enhancing Tumor.

    Get PDF
    BackgroundAlthough the contrast-enhancing (CE) lesion on T1-weighted MR images is widely used as a surrogate for glioblastoma (GBM), there are also non-enhancing regions of infiltrative tumor within the T2-weighted lesion, which elude radiologic detection. Because non-enhancing GBM (Enh-) challenges clinical patient management as latent disease, this study sought to characterize ex vivo metabolic profiles from Enh- and CE GBM (Enh+) samples, alongside histological and in vivo MR parameters, to assist in defining criteria for estimating total tumor burden.MethodsFifty-six patients with newly diagnosed GBM received a multi-parametric pre-surgical MR examination. Targets for obtaining image-guided tissue samples were defined based on in vivo parameters that were suspicious for tumor. The actual location from where tissue samples were obtained was recorded, and half of each sample was analyzed for histopathology while the other half was scanned using HR-MAS spectroscopy.ResultsThe Enh+ and Enh- tumor samples demonstrated comparable mitotic activity, but also significant heterogeneity in microvascular morphology. Ex vivo spectroscopic parameters indicated similar levels of total choline and N-acetylaspartate between these contrast-based radiographic subtypes of GBM, and characteristic differences in the levels of myo-inositol, creatine/phosphocreatine, and phosphoethanolamine. Analysis of in vivo parameters at the sample locations were consistent with histological and ex vivo metabolic data.ConclusionsThe similarity between ex vivo levels of choline and NAA, and between in vivo levels of choline, NAA and nADC in Enh+ and Enh- tumor, indicate that these parameters can be used in defining non-invasive metrics of total tumor burden for patients with GBM

    Amino acid substitutions within the heptad repeat domain 1 of murine coronavirus spike protein restrict viral antigen spread in the central nervous system.

    Get PDF
    Targeted recombination was carried out to select mouse hepatitis viruses (MHVs) in a defined genetic background, containing an MHV-JHM spike gene encoding either three heptad repeat 1 (HR1) substitutions (Q1067H, Q1094H, and L1114R) or L1114R alone. The recombinant virus, which expresses spike with the three substitutions, was nonfusogenic at neutral pH. Its replication was significantly inhibited by lysosomotropic agents, and it was highly neuroattenuated in vivo. In contrast, the recombinant expressing spike with L1114R alone mediated cell-to-cell fusion at neutral pH and replicated efficiently despite the presence of lysosomotropic agents; however, it still caused only subclinical morbidity and no mortality in animals. Thus, both recombinant viruses were highly attenuated and expressed viral antigen which was restricted to the olfactory bulbs and was markedly absent from other regions of the brains at 5 days postinfection. These data demonstrate that amino acid substitutions, in particular L1114R, within HR1 of the JHM spike reduced the ability of MHV to spread in the central nervous system. Furthermore, the requirements for low pH for fusion and viral entry are not prerequisites for the highly attenuated phenotype

    Murine Coronavirus Spike Glycoprotein Mediates Degree of Viral Spread, Inflammation, and Virus-Induced Immunopathology in the Central Nervous System

    Get PDF
    AbstractThe mouse hepatitis virus (MHV) spike glycoprotein is a major determinant of neurovirulence. We investigated how alterations in spike affect neurovirulence using two isogenic recombinant viruses differing exclusively in spike. S4R, containing the MHV-4 spike gene, is dramatically more neurovirulent than SA59R, containing the MHV-A59 spike gene (J. J. Phillips, M. M. Chua, E. Lavi, and S. R. Weiss, 1999, J. Virol. 73, 7752–7760). We examined the contribution of differences in cellular tropism, viral spread, and the immune response to infection to the differential neurovirulence of S4R and SA59R. MHV-4 spike-mediated neurovirulence was associated with extensive viral spread in the brain in both neurons and astrocytes. Infection of primary hippocampal neuron cultures demonstrated that S4R spread more rapidly than SA59R and suggested that spread may occur between cells in close physical contact. In addition, S4R infection induced a massive influx of lymphocytes into the brain, a higher percentage of CD8+ T cells, and a higher frequency of MHV-specific CD8+ T cells relative SA59R infection. Despite this robust and viral-specific immune response to S4R infection, infection of RAG1−/− mice suggested that immune-mediated pathology also contributes to the high neurovirulence of S4R

    Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma.

    Get PDF
    Infiltrating low grade gliomas (LGGs) are heterogeneous in their behavior and the strategies used for clinical management are highly variable. A key factor in clinical decision-making is that patients with mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/2) oncogenes are more likely to have a favorable outcome and be sensitive to treatment. Because of their relatively long overall median survival, more aggressive treatments are typically reserved for patients that have undergone malignant progression (MP) to an anaplastic glioma or secondary glioblastoma (GBM). In the current study, ex vivo metabolic profiles of image-guided tissue samples obtained from patients with newly diagnosed and recurrent LGG were investigated using proton high-resolution magic angle spinning spectroscopy (1H HR-MAS). Distinct spectral profiles were observed for lesions with IDH-mutated genotypes, between astrocytoma and oligodendroglioma histologies, as well as for tumors that had undergone MP. Levels of 2-hydroxyglutarate (2HG) were correlated with increased mitotic activity, axonal disruption, vascular neoplasia, and with several brain metabolites including the choline species, glutamate, glutathione, and GABA. The information obtained in this study may be used to develop strategies for in vivo characterization of infiltrative glioma, in order to improve disease stratification and to assist in monitoring response to therapy

    Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model.

    Get PDF
    Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma

    Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation.

    Get PDF
    Genomic sequence interpretation can miss clinically relevant missense variants for several reasons. Rare missense variants are numerous in the exome and difficult to prioritise. Affected genes may also not have existing disease association. To improve variant prioritisation, we leverage population exome data to identify intragenic missense-depleted regions (MDRs) genome-wide that may be important in disease. We then use missense depletion analyses to help prioritise undiagnosed disease exome variants. We demonstrate application of this strategy to identify a novel gene association for human brain malformation. We identified de novo missense variants that affect the GDP/GTP-binding site of ARF1 in three unrelated patients. Corresponding functional analysis suggests ARF1 GDP/GTP-activation is affected by the specific missense mutations associated with heterotopia. These findings expand the genetic pathway underpinning neurologic disease that classically includes FLNA. ARF1 along with ARFGEF2 add further evidence implicating ARF/GEFs in the brain. Using functional ontology, top MDR-containing genes were highly enriched for nucleotide-binding function, suggesting these may be candidates for human disease. Routine consideration of MDR in the interpretation of exome data for rare diseases may help identify strong genetic factors for many severe conditions, infertility/reduction in reproductive capability, and embryonic conditions contributing to preterm loss
    • …
    corecore