27,327 research outputs found
Covariant four-dimensional scattering equations for the system
We derive a set of coupled four-dimensional integral equations for the
system using our modified version of the Taylor method of
classification-of-diagrams. These equations are covariant, obey two and
three-body unitarity and contain subtraction terms which eliminate the
double-counting present in some previous four-dimensional
equations. The equations are then recast into a from convenient for computation
by grouping the subtraction terms together and obtaining a set of two-fragment
scattering equations for the amplitudes of interest.Comment: Version accepted for publication in ``Annals of Physics''. New
section containing two new figures added. 58 pages, 20 figures. Uses RevTeX.
For copies of figures email [email protected]
The classification of diagrams in perturbation theory
The derivation of scattering equations connecting the amplitudes obtained
from diagrammatic expansions is of interest in many branches of physics. One
method for deriving such equations is the classification-of-diagrams technique
of Taylor. However, as we shall explain in this paper, there are certain points
of Taylor's method which require clarification. Firstly, it is not clear
whether Taylor's original method is equivalent to the simpler
classification-of-diagrams scheme used by Thomas, Rinat, Afnan and Blankleider
(TRAB). Secondly, when the Taylor method is applied to certain problems in a
time-dependent perturbation theory it leads to the over-counting of some
diagrams. This paper first restates Taylor's method, in the process uncovering
reasons why certain diagrams might be double-counted in the Taylor method. It
then explores how far Taylor's method is equivalent to the simpler TRAB method.
Finally, it examines precisely why the double-counting occurs in Taylor's
method, and derives corrections which compensate for this double-counting.Comment: 50 pages, RevTeX. Major changes from original version. Thirty figures
available upon request to [email protected]. Accepted for
publication in Annals of Physic
Using social engagement to inspire design learning
Social design and âdesign for needâ are important frameworks for establishing ethical understanding amongst novice product designers. Typically, product design is a value-adding activity where normally aesthetics, usability and manufacturability are the key agendas. Howard [1] in his essay âDesign beyond commodificationâ discusses the role of designers in contributing to cultural expressions designed to influence consumer aspirations and desires. He argues that designers are impelled âto participate in the creation of lifestyles that demand the acquisition of goods as a measure of progress and status.â As emerging consumers, student designers tend to reflect this consumer culture in their work, seeking to add âmarketabilityâ by focusing on aesthetic development. However value adding can occur in many different manifestations, often outside commercial expectations and the studentsâ experience. Projects that may be perceived as having limited market potential can often have significant personal impact for both recipient and designer. Social engagement provides a valuable insight for design students into the potential of design to contribute solutions to societal well-being, rather than serve market forces. Working in a local context can enhance this, with unlimited access to end users, their environs and the product context, enabling the development of user empathy and a more intgrated collaborative process. The âFixpertsâ social project discussed in this paper has proved to be an effective method of engaging undergraduate students in participatory design within their local community. This model for social engagement has provided an unprecedented learning experience, and established a strong ethical framework amongst Brunel design students
Delta Effects in Pion-Nucleon Scattering and the Strength of the Two-Pion-Exchange Three-Nucleon Interaction
We consider the relationship between P-wave pi-N scattering and the strength
of the P-wave two-pion-exchange three-nucleon interaction (TPE3NI). We explain
why effective theories that do not contain the delta resonance as an explicit
degree of freedom tend to overestimate the strength of the TPE3NI. The
overestimation can be remedied by higher-order terms in these ``delta-less''
theories, but such terms are not yet included in state-of-the-art chiral EFT
calculations of the nuclear force. This suggests that these calculations can
only predict the strength of the TPE3NI to an accuracy of +/-25%.Comment: 13 pages, 2 figures, uses eps
The magnetic form factor of the deuteron in chiral effective field theory
We calculate the magnetic form factor of the deuteron up to O(eP^4) in the
chiral EFT expansion of the electromagnetic current operator. The two LECs
which enter the two-body part of the isoscalar NN three-current operator are
fit to experimental data, and the resulting values are of natural size. The
O(eP^4) description of G_M agrees with data for momentum transfers Q^2 < 0.35
GeV^2.Comment: 4 pages, 2 figure
Molecular orientational dynamics of the endohedral fullerene ScN@C as probed by C and Sc NMR
We measure 13C and 45Sc NMR lineshapes and spin-lattice relaxation times (T1)
to probe the orientational dynamics of the endohedral metallofullerene
Sc3N@C80. The measurements show an activated behavior for molecular
reorientations over the full temperature range with a similar behavior for the
temperature dependence of the 13C and 45Sc data. Combined with spectral data
from Magic Angle Spinning (MAS) NMR, the measurements can be interpreted to
mean the motion of the encapsulated Sc3N molecule is independent of that of the
C80 cage, although this requires the similar temperature dependence of the 13C
and 45Sc spin-lattice relaxation times to be coincidental. For the Sc3N to be
fixed to the C80 cage, one must overcome the symmetry breaking effect this has
on the Sc3N@C80 system since this would result in more than the observed two
13C lines.Comment: 6 pages, 5 figure
A Bose-Einstein Condensate in a Uniform Light-induced Vector Potential
We use a two-photon dressing field to create an effective vector gauge
potential for Bose-condensed Rb atoms in the F=1 hyperfine ground state. The
dressed states in this Raman field are spin and momentum superpositions, and we
adiabatically load the atoms into the lowest energy dressed state. The
effective Hamiltonian of these neutral atoms is like that of charged particles
in a uniform magnetic vector potential, whose magnitude is set by the strength
and detuning of Raman coupling. The spin and momentum decomposition of the
dressed states reveals the strength of the effective vector potential, and our
measurements agree quantitatively with a simple single-particle model. While
the uniform effective vector potential described here corresponds to zero
magnetic field, our technique can be extended to non-uniform vector potentials,
giving non-zero effective magnetic fields.Comment: 5 pages, submitted to Physical Review Letter
Quantum state preparation in semiconductor dots by adiabatic rapid passage
Preparation of a specific quantum state is a required step for a variety of
proposed practical uses of quantum dynamics. We report an experimental
demonstration of optical quantum state preparation in a semiconductor quantum
dot with electrical readout, which contrasts with earlier work based on Rabi
flopping in that the method is robust with respect to variation in the optical
coupling. We use adiabatic rapid passage, which is capable of inverting single
dots to a specified upper level. We demonstrate that when the pulse power
exceeds a threshold for inversion, the final state is independent of power.
This provides a new tool for preparing quantum states in semiconductor dots and
has a wide range of potential uses.Comment: 4 pages, 4 figure
- âŠ