36 research outputs found

    Illumina mate-paired DNA sequencing-library preparation using Cre-Lox recombination

    Get PDF
    Standard Illumina mate-paired libraries are constructed from 3- to 5-kb DNA fragments by a blunt-end circularization. Sequencing reads that pass through the junction of the two joined ends of a 3-5-kb DNA fragment are not easy to identify and pose problems during mapping and de novo assembly. Longer read lengths increase the possibility that a read will cross the junction. To solve this problem, we developed a mate-paired protocol for use with Illumina sequencing technology that uses Cre-Lox recombination instead of blunt end circularization. In this method, a LoxP sequence is incorporated at the junction site. This sequence allows screening reads for junctions without using a reference genome. Junction reads can be trimmed or split at the junction. Moreover, the location of the LoxP sequence in the reads distinguishes mate-paired reads from spurious paired-end reads. We tested this new method by preparing and sequencing a mate-paired library with an insert size of 3 kb from Saccharomyces cerevisiae. We present an analysis of the library quality statistics and a new bio-informatics tool called DeLoxer that can be used to analyze an IlluminaCre-Lox mate-paired data set. We also demonstrate how the resulting data significantly improves a de novo assembly of the S. cerevisiae genome

    Quantitative Bias in Illumina TruSeq and a Novel Post Amplification Barcoding Strategy for Multiplexed DNA and Small RNA Deep Sequencing

    Get PDF
    Here we demonstrate a method for unbiased multiplexed deep sequencing of RNA and DNA libraries using a novel, efficient and adaptable barcoding strategy called Post Amplification Ligation-Mediated (PALM). PALM barcoding is performed as the very last step of library preparation, eliminating a potential barcode-induced bias and allowing the flexibility to synthesize as many barcodes as needed. We sequenced PALM barcoded micro RNA (miRNA) and DNA reference samples and evaluated the quantitative barcode-induced bias in comparison to the same reference samples prepared using the Illumina TruSeq barcoding strategy. The Illumina TruSeq small RNA strategy introduces the barcode during the PCR step using differentially barcoded primers, while the TruSeq DNA strategy introduces the barcode before the PCR step by ligation of differentially barcoded adaptors. Results show virtually no bias between the differentially barcoded miRNA and DNA samples, both for the PALM and the TruSeq sample preparation methods. We also multiplexed miRNA reference samples using a pre-PCR barcode ligation. This barcoding strategy results in significant bias

    RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    No full text

    Library construction for next-generation sequencing: overviews and challenges

    No full text
    High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources. Factors such as the quantity and physical characteristics of the RNA or DNA source material as well as the desired application (i.e., genome sequencing, targeted sequencing, RNA-seq, ChIP-seq, RIP-seq, and methylation) are addressed in the context of preparing high quality sequencing libraries. In addition, the current methods for preparing NGS libraries from single cells are also discussed

    KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry

    Get PDF
    Many candidate unnatural DNA base pairs have been developed, but some of the best-replicated pairs adopt intercalated structures in free DNA that are difficult to reconcile with known mechanisms of polymerase recognition. Here we present crystal structures of KlenTaq DNA polymerase at different stages of replication for one such pair,dNaM-d5SICS, and show that efficient replication results from the polymerase itself, inducing the required natural-like structure
    corecore