8 research outputs found

    Double stranded DNA breaks and genome editing trigger loss of ribosomal protein RPS27A

    No full text
    DNA damage activates a robust transcriptional stress response, but much less is known about how DNA damage impacts translation. The advent of genome editing with Cas9 has intensified interest in understanding cellular responses to DNA damage. Here, we find that DNA double-strand breaks (DSBs), including those induced by Cas9, trigger the loss of ribosomal protein RPS27A from ribosomes via p53-independent proteasomal degradation. Comparisons of Cas9 and dCas9 ribosome profiling and mRNA-seq experiments reveal a global translational response to DSBs that precedes changes in transcript abundance. Our results demonstrate that even a single DSB can lead to altered translational output and ribosome remodeling, suggesting caution in interpreting cellular phenotypes measured immediately after genome editing.ISSN:1742-464XISSN:1742-465

    Cross-species screening platforms identify EPS-8 as a critical link for mitochondrial stress and actin stabilization

    No full text
    The dysfunction of mitochondria is associated with the physiological consequences of aging and many age-related diseases. Therefore, critical quality control mechanisms exist to protect mitochondrial functions, including the unfolded protein response of the mitochondria (UPRMT). However, it is still unclear how UPRMT is regulated in mammals with mechanistic discrepancies between previous studies. Here, we reasoned that a study of conserved mechanisms could provide a uniquely powerful way to reveal previously uncharacterized components of the mammalian UPRMT. We performed cross-species comparison of genetic requirements for survival under—and in response to—mitochondrial stress between karyotypically normal human stem cells and the nematode Caenorhabditis elegans. We identified a role for EPS-8/EPS8 (epidermal growth factor receptor pathway substrate 8), a signaling protein adaptor, in general mitochondrial homeostasis and UPRMT regulation through integrin-mediated remodeling of the actin cytoskeleton. This study also highlights the use of cross-species comparisons in genetic screens to interrogate cellular pathways

    Adhesion-mediated mechanosignaling forces mitohormesis.

    No full text
    Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer
    corecore