450 research outputs found

    Low-Dimensional Transport and Large Thermoelectric Power Factors in Bulk Semiconductors by Band Engineering of Highly Directional Electronic States

    Get PDF
    Thermoelectrics are promising to address energy issues but their exploitation is still hampered by low efficiencies. So far, much improvement has been achieved by reducing the thermal conductivity but less by maximizing the power factor. The latter imposes apparently conflicting requirements on the band structure: a narrow energy distribution and a low effective mass. Quantum confinement in nanostructures or the introduction of resonant states were suggested as possible solutions to this paradox but with limited success. Here, we propose an original approach to fulfill both requirements in bulk semiconductors. It exploits the highly-directional character of some orbitals to engineer the band-structure and produce a type of low-dimensional transport similar to that targeted in nanostructures, while retaining isotropic properties. Using first-principles calculations, the theoretical concept is demonstrated in Fe2_2YZ Heusler compounds, yielding power factors 4-5 times larger than in classical thermoelectrics at room temperature. Our findings are totally generic and rationalize the search of alternative compounds with a similar behavior. Beyond thermoelectricity, these might be relevant also in the context of electronic, superconducting or photovoltaic applications.Comment: 6 pages, 2 figure

    On the use of U-Net for dominant melody estimation in polyphonic music

    Get PDF
    International audienceEstimation of dominant melody in polyphonic music remains a difficult task, even though promising breakthroughs have been done recently with the introduction of the Harmonic CQT and the use of fully convolutional networks. In this paper, we build upon this idea and describe how U-Net-a neural network originally designed for medical image segmentation-can be used to estimate the dominant melody in polyphonic audio. We propose in particular the use of an original layer-by-layer sequential training method, and show that this method used along with careful training data conditioning improve the results compared to plain convolutional networks

    Characterization of wake- and tip-vortex-induced unsteady blade response in multistage compressor environment

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.Includes bibliographical references (p. 90-91).by Geoffroy Lenglin.S.M

    Topological effects of a vorticity filament on the coherent backscattering cone

    Get PDF
    In this Letter, we report on the effects of a vorticity filament on the coherent backscattering cone. Using ultrasonic waves in a strongly reverberating cavity, we experimentally show that the discrete number of loops of acoustic paths around a pointlike vortex located at the center of the cavity drives the cancellation and the potential rebirth of the coherent backscattering enhancement. The vorticity filament behaves, then, as a topological anomaly for wave propagation that provides some new insight between reciprocity and weak localization

    Logarithmic scaling for height variables in the Abelian sandpile model

    Get PDF
    We report on the exact computation of the scaling form of the 1-point function, on the upper-half plane, of the height 2 variable in the two-dimensional Abelian sandpile model. By comparing the open versus the closed boundary condition, we find that the scaling field associated to the height 2 is a logarithmic scalar field of scaling dimension 2, belonging to a c=-2 logarithmic conformal field theory. This identification is confirmed by numerical simulations and extended to the height 3 and 4 variables, which exhibit the same scaling form. Using the conformal setting, we make precise proposals for the bulk 2-point functions of all height variables.Comment: 7 pages, 2 figure

    Pre-logarithmic and logarithmic fields in a sandpile model

    Full text link
    We consider the unoriented two-dimensional Abelian sandpile model on the half-plane with open and closed boundary conditions, and relate it to the boundary logarithmic conformal field theory with central charge c=-2. Building on previous results, we first perform a complementary lattice analysis of the operator effecting the change of boundary condition between open and closed, which confirms that this operator is a weight -1/8 boundary primary field, whose fusion agrees with lattice calculations. We then consider the operators corresponding to the unit height variable and to a mass insertion at an isolated site of the upper half plane and compute their one-point functions in presence of a boundary containing the two kinds of boundary conditions. We show that the scaling limit of the mass insertion operator is a weight zero logarithmic field.Comment: 18 pages, 9 figures. v2: minor corrections + added appendi

    Height variables in the Abelian sandpile model: scaling fields and correlations

    Get PDF
    We compute the lattice 1-site probabilities, on the upper half-plane, of the four height variables in the two-dimensional Abelian sandpile model. We find their exact scaling form when the insertion point is far from the boundary, and when the boundary is either open or closed. Comparing with the predictions of a logarithmic conformal theory with central charge c=-2, we find a full compatibility with the following field assignments: the heights 2, 3 and 4 behave like (an unusual realization of) the logarithmic partner of a primary field with scaling dimension 2, the primary field itself being associated with the height 1 variable. Finite size corrections are also computed and successfully compared with numerical simulations. Relying on these field assignments, we formulate a conjecture for the scaling form of the lattice 2-point correlations of the height variables on the plane, which remain as yet unknown. The way conformal invariance is realized in this system points to a local field theory with c=-2 which is different from the triplet theory.Comment: 68 pages, 17 figures; v2: published version (minor corrections, one comment added
    corecore