36 research outputs found

    More rapid blood interferon α2 decline in fatal versus surviving COVID-19 patients

    Get PDF
    BackgroundThe clinical outcome of COVID-19 pneumonia is highly variable. Few biological predictive factors have been identified. Genetic and immunological studies suggest that type 1 interferons (IFN) are essential to control SARS-CoV-2 infection.ObjectiveTo study the link between change in blood IFN-α2 level and plasma SARS-Cov2 viral load over time and subsequent death in patients with severe and critical COVID-19.MethodsOne hundred and forty patients from the CORIMUNO-19 cohort hospitalized with severe or critical COVID-19 pneumonia, all requiring oxygen or ventilation, were prospectively studied. Blood IFN-α2 was evaluated using the Single Molecule Array technology. Anti-IFN-α2 auto-Abs were determined with a reporter luciferase activity. Plasma SARS-Cov2 viral load was measured using droplet digital PCR targeting the Nucleocapsid gene of the SARS-CoV-2 positive-strand RNA genome.ResultsAlthough the percentage of plasmacytoid dendritic cells was low, the blood IFN-α2 level was higher in patients than in healthy controls and was correlated to SARS-CoV-2 plasma viral load at entry. Neutralizing anti-IFN-α2 auto-antibodies were detected in 5% of patients, associated with a lower baseline level of blood IFN-α2. A longitudinal analysis found that a more rapid decline of blood IFN-α2 was observed in fatal versus surviving patients: mortality HR=3.15 (95% CI 1.14–8.66) in rapid versus slow decliners. Likewise, a high level of plasma SARS-CoV-2 RNA was associated with death risk in patients with severe COVID-19.ConclusionThese findings could suggest an interest in evaluating type 1 IFN treatment in patients with severe COVID-19 and type 1 IFN decline, eventually combined with anti-inflammatory drugs.Clinical trial registrationhttps://clinicaltrials.gov, identifiers NCT04324073, NCT04331808, NCT04341584

    Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide

    Get PDF
    The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk

    Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology

    Get PDF
    Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Development of a single-mode cost-effective pumping scheme

    No full text
    International audienceIn this article, a new architecture for broad-area laser diode on glass platform is proposed. It is composed of a planar mode converter made by ion-exchange on glass and a Fiber Bragg Grating and provides a single-mode and wavelength selective optical feedback in the multimode pump laser. The spectral locking of the laser diode is experimentally demonstrated with a side mode suppression ratio superior to 25 dB for an injection current inferior to 1 A

    Urinary protein or albumin/creatinin ratio for reporting measurements results.

    Full text link
    International audienceUrinary proteins or urinary albumin exhibit a high intra individual variability. Therefore, urine collected during 24 hours has been recognized as a reference biological fluid for usual values determination. However, urine collection during a day is difficult and numerous studies have been performed to replace the "gold standard" with measures on random samples and results given as protein/creatinine ratio or albumin/creatinine ratio, to decrease the variability. The paper presents the populations where ratios are well correlated with protein excretion, the cut-off values recommended in clinical settings and the limits of using ratio rather than 24 h excretion.Le dosage des protĂ©ines ou de l’albumine dans les urines prĂ©sente unevariabilitĂ© intra-individuelle non nĂ©gligeable. Cela a conduit Ă  utiliser les urinesrecueillies sur 24 heures comme milieu biologique de rĂ©fĂ©rence pour dĂ©termi-ner des valeurs usuelles, en dessus desquelles on diagnostique une protĂ©inuriepositive. Cependant, la difficultĂ© d’un tel recueil a gĂ©nĂ©rĂ© un nombre importantd’études pour tenter de remplacer ce «gold standard» par une mesure sur unĂ©chantillon d’urines et rapporter la valeur mesurĂ©e Ă  celle de la crĂ©atinine, afinde limiter la variabilitĂ©. Cet article tente de prĂ©senter les cas oĂč le ratio P/Cou A/C est performant, les recommandations des seuils de dĂ©tection dans lessituations cliniques ainsi que les limites Ă  son utilisation

    Development of a single-mode cost-effective pumping scheme

    No full text
    International audienceIn this article, a new architecture for broad-area laser diode on glass platform is proposed. It is composed of a planar mode converter made by ion-exchange on glass and a Fiber Bragg Grating and provides a single-mode and wavelength selective optical feedback in the multimode pump laser. The spectral locking of the laser diode is experimentally demonstrated with a side mode suppression ratio superior to 25 dB for an injection current inferior to 1 A

    Acute Kidney Injury in Critically-Ill COVID-19 Patients

    No full text
    Purpose: Acute kidney injury (AKI) is common in patients with COVID-19, however, its mechanism is still controversial, particularly in ICU settings. Urinary proteinuria profile could be a non-invasive tool of interest to scrutinize the pathophysiological process underlying AKI in COVID-19 patients. Material and Methods: We conducted a retrospective study between March 2020 and April 2020. All patients with laboratory-confirmed COVID-19 and without end-stage kidney disease requiring renal replacement therapy before ICU admission were included. Our objectives were to assess the incidence and risk factors for AKI and to describe its clinical and biological characteristics, particularly its urinary protein profile. Results: Seventy patients were included; 87% needed mechanical ventilation and 61% needed vasopressor during their ICU stay; 64.3% of patients developed AKI and half of them needed dialysis. Total and tubular proteinuria on day 1 were higher in patients with AKI, whereas glomerular proteinuria was similar in both groups. The main risk factor for AKI was shock at admission (OR = 5.47 (1.74–17.2), p < 0.01). Mortality on day 28 was higher in AKI (23/45, 51.1%) than in no-AKI patients (1/25, 4%), p < 0.001. Risk factors for 28-days mortality were AKI with need for renal replacement therapy, non-renal SOFA score and history of congestive heart failure. Conclusions: AKI is common in COVID-19 patients hospitalized in ICU; it seems to be related to tubular lesions rather than glomerular injury and is related to shock at ICU admission
    corecore