211 research outputs found

    Parvalbumin: calcium and magnesium buffering in the distal nephron

    Get PDF
    Parvalbumin (PV) is a classical member of the EF-hand protein superfamily that has been described as a Ca2+ buffer and Ca2+ transporter/shuttle protein and may also play an additional role in Mg2+ handling. PV is exclusively expressed in the early part of the distal convoluted tubule in the human and mouse kidneys. Recent studies in Pvalb knockout mice revealed a role of PV in the distal handling of electrolytes: the lack of PV was associated with a mild salt-losing phenotype with secondary aldosteronism, salt craving and stronger bones compared with controls. A link between the Ca2+-buffering capacity of PV and the expression of the thiazide-sensitive Na+-Cl− cotransporter was established, which could be relevant to the regulation of sodium transport in the distal nephron. Variants in the PVALB gene that encodes PV have been described, but their relevance to kidney function has not been established. PV is also considered a reliable marker of chromophobe carcinoma and oncocytoma, two neoplasms deriving from the distal nephron. The putative role of PV in tumour genesis remains to be investigate

    Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers

    Get PDF
    Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The absence of dystrophin induces an abnormal increase of sarcolemmal calcium influx through cationic channels in adult skeletal muscle fibers from dystrophic (mdx) mice. We observed that the activity of these channels was increased after depletion of the stores of calcium with thapsigargin or caffeine. By analogy with the situation observed in nonexcitable cells, we therefore hypothesized that these store-operated channels could belong to the transient receptor potential channel (TRPC) family. We measured the expression of TRPC isoforms in normal and mdx adult skeletal muscles fibers, and among the seven known isoforms, five were detected (TRPC1, 2, 3, 4, and 6) by RT-PCR. Western blot analysis and immunocytochemistry of normal and mdx muscle fibers demonstrated the localization of TRPC1, 4, and 6 proteins at the plasma membrane. Therefore, an antisense strategy was used to repress these TRPC isoforms. In parallel with the repression of the TRPCs, we observed that the occurrence of calcium leak channels was decreased to one tenth of its control value (patch-clamp technique), showing the involvement of TRPC in the abnormal calcium influx observed in dystrophic fibers

    N-Aryl-N'-(chroman-4-yl)ureas and thioureas display in vitro anticancer activity and selectivity on apoptosis-resistant glioblastoma cells: screening, synthesis of simplified derivatives, and structure-activity relationship analysis.

    Full text link
    A series of chroman derivatives previously reported as potassium channel openers, as well as some newly synthesized simplified structures, were examined for their in vitro effects on the growth of three human high-grade glioma cell lines: U373, T98G, and Hs683. Significant in vitro growth inhibitory activity was observed with 2,2-dimethylchroman-type nitro-substituted phenylthioureas, such as compounds 4o and 4p. Interestingly, most tested phenylureas were found to be slightly less active, but more cell selective (normal versus tumor glial cells, such as 3d, 3e, and 3g), thus less toxic, than the corresponding phenylthioureas. No significant differences were observed in terms of chroman-derivative-induced growth inhibitory effects between glioma cells sensitive to pro-apoptotic stimuli (Hs683 glioma cells) and glioma cells associated with various levels of resistance to pro-apoptotic stimuli (U373 and T98G glioma cells), a feature that suggests non-apoptotic-mediated growth inhibition. Flow cytometry analyses confirmed the absence of pro-apoptotic effects for phenylthioureas and phenylureas when analyzed in U373 glioma cells and demonstrated U373 cell cycle arrest in the G0/G1 phase. Computer-assisted phase-contrast videomicroscopy revealed that 3d and 3g displayed cytostatic effects, while 3e displayed cytotoxic ones. As a result, this work identified phenylurea-type 2,2-dimethylchromans as a new class of antitumor agents to be further explored for an innovative therapeutic approach for high-grade glioma and/or for a possible new mechanism of action

    Inhibitory synapse dysfunction and epileptic susceptibility associated with KIF2A deletion in cortical interneurons

    Get PDF
    Malformation of cortical development (MCD) is a family of neurodevelopmental disorders, which usually manifest with intellectual disability and early-life epileptic seizures. Mutations in genes encoding microtubules (MT) and MT-associated proteins are one of the most frequent causes of MCD in humans. KIF2A is an atypical kinesin that depolymerizes MT in ATP-dependent manner and regulates MT dynamics. In humans, single de novo mutations in KIF2A are associated with MCD with epileptic seizures, posterior pachygyria, microcephaly, and partial agenesis of corpus callosum. In this study, we conditionally ablated KIF2A in forebrain inhibitory neurons and assessed its role in development and function of inhibitory cortical circuits. We report that adult mice with specific deletion of KIF2A in GABAergic interneurons display abnormal behavior and increased susceptibility to epilepsy. KIF2A is essential for tangential migration of cortical interneurons, their positioning in the cerebral cortex, and for formation of inhibitory synapses in vivo. Our results shed light on how KIF2A deregulation triggers functional alterations in neuronal circuitries and contributes to epilepsy

    TRP channels in normal and dystrophic skeletal muscle.

    No full text
    TRP proteins constitute non-selective cation-permeable ion channels, most of which are permeable to Ca(2+). In skeletal muscle, several isoforms of the TRPC (Canonical), TRPV (Vanilloid) and TRPM (Melastatin) subfamilies are expressed. In particular, TRPC1, C3 and C6, TRPV2 and V4, TRPM4 and TRPM7 have been consistently found in cultured myoblasts or in adult muscles. These channels seem to directly or indirectly respond to membrane stretch or to Ca(2+) stores depletion; some isoforms might also constitute unregulated Ca(2+) leak channels. Their function is largely unknown. TRPC1 and C3 have been involved in muscle development, in particular in myoblasts migration and differentiation. TRPC1 and V4 might allow a basal influx of Ca(2+) at rest. Their lack has consequences on muscle fatigue. TRPV2 seems to be stretch-sensitive. It localizes mainly in intracellular pools at rest, and translocates to the plasma membrane upon IGF-1 stimulation. TRP channels seem to be involved in the pathophysiology of muscle disorders. In particular in Duchenne muscular dystrophy, the lack of the cytoskeletal protein dystrophin induces a disregulation of several ion channels leading to an abnormal influx of Ca(2+). We discuss here, the possible involvement of TRP channels in this abnormal influx of Ca(2+)
    • …
    corecore