21 research outputs found

    In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [(68)Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [(68)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [(68)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [(18)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34(+) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [(68)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging.

    No full text
    Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [68Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [68Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [68Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [68Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders

    Molecular imaging for early prediction of response to Sorafenib treatment in sarcoma.

    No full text
    The role of [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET in staging of sarcoma is well established. The aim of this preclinical study was to compare [(18)F]fluorothymidine ([(18)F]FLT) PET to [(18)F]FDG PET regarding early metabolic changes of sarcoma in the course of targeted cancer therapy. SCID mice bearing sarcoma A673 xenotransplants were used for investigation of tumor response after treatment with the multikinase inhibitor Sorafenib. [(18)F]FLT and/or [(18)F]FDG-PET were performed prior to and early after initiation of treatment. Tumoral uptake (% Injected Dose per gram (%ID/g) of [(18)F]FLT-PET was compared to [(18)F]FDG-PET. Results were correlated with histopathology and in vitro data including cellular uptake, cell cycle-related protein expression, cell cycle distribution and apoptosis. In vitro experiments showed that A673 cells were sensitive to Sorafenib. In vivo, tumor growth was inhibited in comparison to a 4-fold increase of the tumor volume in control mice. Using [(18)F]FDG as tracer, a moderate reduction in tracer uptake (n=15, mean relative %ID/g 74%, range 35%-121%, p=0.03) was observed. The decrease in %ID/g using [(18)F]FLT-PET was significantly higher (p=0.003). The mean relative %ID/g in [(18)F]FLT uptake on day + 5 was significantly reduced to 54% compared to baseline (n=15, range 24%-125%, SD=29%). The PET analysis 24 hr after therapy showed a significant reduction of the mean [(18)F]FLT-%ID/g (p=0.04). The reduction of %ID/g on day + 1 in [(18)F]FDG-PET was not statistically significant (p=0.99). In conclusion, both [(18)F]FDG- and [(18)F]FLT-PET were able to predict response to Sorafenib treatment. In contrast to [(18)F]FDG-PET, [(18)F]FLT-PET was more predictive for very early response to treatment

    In vivo molecular imaging of chemokine receptor CXCR 4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination andpoor prognosis. We evaluated the novel CXCR4 probe [68^{68}Ga]Pentixafor for invivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [68^{68}Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [68^{68}Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [18^{18}F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34+^{+} flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [68^{68}Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    JAM-A as a prognostic factor and new therapeutic target in multiple myeloma

    No full text
    Cell adhesion in the multiple myeloma (MM) microenvironment has been recognized as a major mechanism of MM cell survival and the development of drug resistance. Here we addressed the hypothesis that the protein junctional adhesion molecule-A (JAM-A) may represent a novel target and a clinical biomarker in MM. We evaluated JAM-A expression in MM cell lines and in 147 MM patient bone marrow aspirates and biopsies at different disease stages. Elevated JAM-A levels in patient-derived plasma cells were correlated with poor prognosis. Moreover, circulating soluble JAM-A (sJAM-A) levels were significantly increased in MM patients as compared with controls. Notably, in vitro JAM-A inhibition impaired MM migration, colony formation, chemotaxis, proliferation and viability.In vivo treatment with an anti-JAM-A monoclonal antibody (αJAM-A moAb) impaired tumor progression in a murine xenograft MM model. These results demonstrate that therapeutic targeting of JAM-A has the potential to prevent MM progression, and lead us to propose JAM-A as a biomarker in MM, and sJAM-A as a serum-based marker for clinical stratification
    corecore