6 research outputs found

    Annual exposure of the Swiss population from medical imaging in 2018

    No full text
    Nationwide surveys on radiation dose to the population from medical imaging are recommended in order to follow trends in population exposure. The goal of the 2018 survey was to investigate the current exposure. The invoice coding information was collected in five university hospitals and large clinics. To improve the estimation of the effective dose delivered in computed tomography (CT), we collected dose data from different Dose Archiving Communication Systems. On average, we found that 1.2 radiological examinations per year and per inhabitant were performed. Dental radiography was the most frequent examination (48% of all the X-ray examinations), followed by conventional radiography (36%) and CT (11%). The average annual effective dose was estimated to be 1.48 mSv per inhabitant, with CT representing 64% of that dose. Our results show that the exposure of the Swiss population from medical imaging has remained stable since 2013, despite a 15% increase in the number of CT examinations

    Derivation of new diagnostic reference levels for neuro-paediatric computed tomography examinations in Switzerland

    No full text
    Purpose. Definition of new national diagnostic reference levels (DRLs) for volume computed tomography dose index (CTDIvol) and dose length product (DLP) for neuro-paediatric CT examinations depending on the medical indication. Methods. Paediatric cranial CT data sets acquired between January 2013 and December 2016 were retrospectively collected between July 2016 and March 2017 from eight of the largest university and cantonal hospitals that perform most of the neuro-paediatric CTs in Switzerland. A consensus review of CTDIvol and DLP was undertaken for three defined anatomical regions: brain, facial bone, and petrous bone, each with and without contrast medium application. All indications for cranial CT imaging in paediatrics were assigned to one of these three regions. Descriptive statistical analysis of the distribution of the median values for CTDIvol and DLP yielded values in the minimum, maximum, 25th percentile (1st quartile), median (2nd quartile), and 75th percentile (3rd quartile). New DRLs for neuro-paediatric CT examinations in Switzerland were based on the 75th percentiles of the distributions of the median values of all eight centres. Where appropriate, values were rounded such that the DRLs increase or at least remain constant as the age of the patient increases. Results. Our results revealed DRLs for CTDIvol and DLP up to 20% lower than the DRLs used so far in Switzerland and elsewhere in Europe. Conclusions. This study provides Swiss neuro-paediatric CT DRL values to establish optimum conditions for paediatric cranial CT examinations. Periodic national updates of DRLs, following international comparisons, are essential

    An education and training programme for radiological institutes: impact on the reduction of the CT radiation dose

    Get PDF
    To establish an education and training programme for the reduction of CT radiation doses and to assess this programme's efficacy
    corecore