28,072 research outputs found

    The mechanics of stochastic slowdown in evolutionary games

    Full text link
    We study the stochastic dynamics of evolutionary games, and focus on the so-called `stochastic slowdown' effect, previously observed in (Altrock et. al, 2010) for simple evolutionary dynamics. Slowdown here refers to the fact that a beneficial mutation may take longer to fixate than a neutral one. More precisely, the fixation time conditioned on the mutant taking over can show a maximum at intermediate selection strength. We show that this phenomenon is present in the prisoner's dilemma, and also discuss counterintuitive slowdown and speedup in coexistence games. In order to establish the microscopic origins of these phenomena, we calculate the average sojourn times. This allows us to identify the transient states which contribute most to the slowdown effect, and enables us to provide an understanding of slowdown in the takeover of a small group of cooperators by defectors: Defection spreads quickly initially, but the final steps to takeover can be delayed substantially. The analysis of coexistence games reveals even more intricate behavior. In small populations, the conditional average fixation time can show multiple extrema as a function of the selection strength, e.g., slowdown, speedup, and slowdown again. We classify two-player games with respect to the possibility to observe non-monotonic behavior of the conditional average fixation time as a function of selection strength.Comment: Accepted for publication in the Journal of Theoretical Biology. Includes changes after peer revie

    Tribrid Inflation in Supergravity

    Full text link
    We propose a novel class of F-term hybrid inflation models in supergravity (SUGRA) where the η\eta-problem is resolved using either a Heisenberg symmetry or a shift symmetry of the Kaehler potential. In addition to the inflaton and the waterfall field, this class (referred to as tribrid inflation) contains a third 'driving' field which contributes the large vacuum energy during inflation by its F-term. In contrast to the ''standard'' hybrid scenario, it has several attractive features due to the property of vanishing inflationary superpotential (W_inf=0) during inflation. While the symmetries of the Kaehler potential ensure a flat inflaton potential at tree-level, quantum corrections induced by symmetry breaking terms in the superpotential generate a slope of the potential and lead to a spectral tilt consistent with recent WMAP observations.Comment: To appear in the proceedings of SUSY09; 5 page

    Showcasing HH production: Benchmarks for the (HL-)LHC

    Get PDF
    Current projections suggest that the LHC will have only limited sensitivity to di-Higgs production in the Standard Model (SM), possibly even after the completion of its high luminosity phase. Multi-Higgs final states play a fundamental role in many extensions of the SM as they are intrinsically sensitive to modifications of the Higgs sector. Therefore, any new observation in multi-Higgs final states could be linked to a range of beyond the SM (BSM) phenomena that are not sufficiently addressed by the SM. Extensions of the Higgs sector typically lead to new phenomenological signatures in multi-Higgs final states that are vastly different from the SM expectation. In this work, we provide a range of signature-driven benchmark points for resonant and non-resonant BSM di-Higgs production that motivate non-SM kinematic correlations and multi-fermion discovery channels. Relying on theoretically well-motivated assumptions, special attention is devoted to the particular case where the presence of new physics will dominantly manifest itself in multi-Higgs final states
    corecore