28,072 research outputs found
The mechanics of stochastic slowdown in evolutionary games
We study the stochastic dynamics of evolutionary games, and focus on the
so-called `stochastic slowdown' effect, previously observed in (Altrock et. al,
2010) for simple evolutionary dynamics. Slowdown here refers to the fact that a
beneficial mutation may take longer to fixate than a neutral one. More
precisely, the fixation time conditioned on the mutant taking over can show a
maximum at intermediate selection strength. We show that this phenomenon is
present in the prisoner's dilemma, and also discuss counterintuitive slowdown
and speedup in coexistence games. In order to establish the microscopic origins
of these phenomena, we calculate the average sojourn times. This allows us to
identify the transient states which contribute most to the slowdown effect, and
enables us to provide an understanding of slowdown in the takeover of a small
group of cooperators by defectors: Defection spreads quickly initially, but the
final steps to takeover can be delayed substantially. The analysis of
coexistence games reveals even more intricate behavior. In small populations,
the conditional average fixation time can show multiple extrema as a function
of the selection strength, e.g., slowdown, speedup, and slowdown again. We
classify two-player games with respect to the possibility to observe
non-monotonic behavior of the conditional average fixation time as a function
of selection strength.Comment: Accepted for publication in the Journal of Theoretical Biology.
Includes changes after peer revie
Tribrid Inflation in Supergravity
We propose a novel class of F-term hybrid inflation models in supergravity
(SUGRA) where the -problem is resolved using either a Heisenberg symmetry
or a shift symmetry of the Kaehler potential. In addition to the inflaton and
the waterfall field, this class (referred to as tribrid inflation) contains a
third 'driving' field which contributes the large vacuum energy during
inflation by its F-term. In contrast to the ''standard'' hybrid scenario, it
has several attractive features due to the property of vanishing inflationary
superpotential (W_inf=0) during inflation. While the symmetries of the Kaehler
potential ensure a flat inflaton potential at tree-level, quantum corrections
induced by symmetry breaking terms in the superpotential generate a slope of
the potential and lead to a spectral tilt consistent with recent WMAP
observations.Comment: To appear in the proceedings of SUSY09; 5 page
Showcasing HH production: Benchmarks for the (HL-)LHC
Current projections suggest that the LHC will have only limited sensitivity
to di-Higgs production in the Standard Model (SM), possibly even after the
completion of its high luminosity phase. Multi-Higgs final states play a
fundamental role in many extensions of the SM as they are intrinsically
sensitive to modifications of the Higgs sector. Therefore, any new observation
in multi-Higgs final states could be linked to a range of beyond the SM (BSM)
phenomena that are not sufficiently addressed by the SM. Extensions of the
Higgs sector typically lead to new phenomenological signatures in multi-Higgs
final states that are vastly different from the SM expectation. In this work,
we provide a range of signature-driven benchmark points for resonant and
non-resonant BSM di-Higgs production that motivate non-SM kinematic
correlations and multi-fermion discovery channels. Relying on theoretically
well-motivated assumptions, special attention is devoted to the particular case
where the presence of new physics will dominantly manifest itself in
multi-Higgs final states
- …
