5 research outputs found

    Fluorescence intensities of HeLa cells in culture after transfection with oligomer <i>278</i>.

    No full text
    <p>(A) A U-shaped, sequence defined cationizable lipo-oligomer <b><i>278</i></b> for complexation of the dual-labeled RNAs (C: cysteine, K: lysine, Stp: succinoyl-tetraethylene pentamine, linA: linoleic acid). (B) Fluorescence intensity images of the HeLa cells, 15 min, 1 h, 6 h and 24 h after transfection of the four different modifications patterns. The contrast level is equal for all images. The scale bar represents 200 μm. (C) Average fluorescence count rate of the cells at the different conditions shown in (B). The error bars represent the standard deviation of three independent measurements.</p

    Design of the dual-labeled RNA oligonucleotide.

    No full text
    <p>(A) 23 nucleotide RNA oligonucleotide conjugated to tetramethylrhodamine (TMR) at its 5’ end <i>via</i> a thioether bond and to Atto488 at its 3’ end <i>via</i> an amide bond. Upon exposure to the cellular environment, the oligonucleotide can be degraded by various RNases. (B) Modification patterns selected to monitor intracellular localization and integrity of the oligonucleotide. RNA backbone modifications to modulate stability towards nucleolytic degradation: 2’-F, 2’-O-Me and phosphorothioate.</p

    Monitoring oligonucleotide degradation using FCS, FCCS and FRET.

    No full text
    <p>The stability of various RNAs was measured as a function of incubation time in cell extracts. The main changes and parameters corresponding to RNA degradation are shown exemplary for construct 2, representing: (A) the diffusion time from the autocorrelation function (FCS), (B) the amplitude of the cross-correlation function (FCCS), (C) an apparent FRET efficiency determined from the fluorescence intensity and (D) the donor fluorescence lifetime based FRET using a phasor analysis. The colored crosses represent the center of mass in the phasor plot of measurements after 1 min (blue), 60 min (green), 120 min (orange) and 180 min (magenta). The grey arrows indicate the direction of the main changes.</p

    Quantification of the fluorescence lifetime measurements.

    No full text
    <p>(A-D) Distribution of the pixels along the line connecting the mono-exponential decays at 4.1 ns and at 1.25 ns in the phasor plot for the four modification patterns. (E) Summary of the average fluorescence lifetimes of the cell populations shown in panels A-D using a Gaussian fit to the distribution. The error bars represent the standard deviations of three independent measurements.</p

    Nanosized Multifunctional Polyplexes for Receptor-Mediated SiRNA Delivery

    No full text
    Although our understanding of RNAi and our knowledge on designing and synthesizing active and safe siRNAs significantly increased during the past decade, targeted delivery remains the major limitation in the development of siRNA therapeutics. On one hand, practical considerations dictate robust chemistry reproducibly providing precise carrier molecules. On the other hand, the multistep delivery process requires dynamic multifunctional carriers of substantial complexity. We present a monodisperse and multifunctional carrier system, synthesized by solid phase supported chemistry, for siRNA delivery <i>in vitro</i> and <i>in vivo</i>. The sequence-defined assembly includes a precise cationic (oligoethanamino)amide core, terminated at the ends by two cysteines for bioreversible polyplex stabilization, at a defined central position attached to a monodisperse polyethylene glycol chain coupled to a terminal folic acid as cell targeting ligand. Complexation with an endosomolytic influenza peptide-siRNA conjugate results in nanosized functional polyplexes of 6 nm hydrodynamic diameter. The necessity of each functional substructure of the carrier system for a specific and efficient gene silencing was confirmed. The nanosized polyplexes showed stability <i>in vivo</i>, receptor-specific cell targeting, and silencing of the EG5 gene in receptor-positive tumors. The nanosized appearance of these particles can be precisely controlled by the oligomer design (from 5.8 to 8.8 nm diameter). A complete surface charge shielding together with the high stability result in good tolerability <i>in vivo</i> and the absence of accumulation in nontargeted tissues such as liver, lung, or spleen. Due to their small size, siRNA polyplexes are efficiently cleared by the kidney
    corecore