11 research outputs found

    Announcement of ring tests for two sediment test methods

    No full text

    Biomagnification of hexachlorobenzene

    No full text

    Comparison of the environmental properties of parasiticides and harmonisation of the basis for environmental assessment at the EU level

    No full text
    Parasiticides are veterinary pharmaceuticals very frequently used in pasture animals. Particularly substances of the classes of avermectins and milbemycins are very common. These substances are highly toxic to non-target organisms, often stable in the environment (persistent) and may potentially accumulative in organisms. The present project contributes to filling environmental data gaps for avermectins and milbemycins. In addition, risk management strategies for parasiticides used in pasture animals were evaluated with regard to their efficacy and practicability reducing the risk to dung or soil organisms

    Results from a round robin test for the ecotoxicological evaluation of construction products using two leaching tests and an aquatic test battery

    No full text
    A European round robin test according to ISO 5725-2 was conceptually prepared, realised, and evaluated. The aim was to determine the inter-laboratory variability of the overall process for the ecotoxicological characterization of construction products in eluates and bioassays. To this end, two construction products BAM-G1 (granulate) and HSR-2 (roof sealing sheet), both made of EPDM polymers (rubber), were selected. The granular construction product was eluted in a one stage batch test, the planar product in the Dynamic Surface Leaching test (DSLT). A total of 17 laboratories from 5 countries participated in the round robin test: Germany (12), Austria (2), Belgium (1), Czech Republic (1) and France (1). A test battery of four standardised ecotoxicity tests with algae, daphnia, luminescent bacteria and zebrafish eggs was used. As toxicity measures, EC50 and LID values were calculated. All tests, except the fish egg test, were basically able to demonstrate toxic effects and the level of toxicity. The reproducibility of test results depended on the test specimens and the test organisms. Generally, the variability of the EC50 or LID values increased with the overall level of toxicity. For the very toxic BAM-G1 eluate a relative high variability of CV = 73%–110% was observed for EC50 in all biotests, while for the less toxic HSR-2 eluate the reproducibility of EC50 varied with sensitivity: it was very good (CV = 9.3%) for the daphnia test with the lowest sensitivity, followed by the algae test (CV = 36.4%). The luminescent bacteria test, being the most sensitive bioassay for HSR-2 Eluate, showed the highest variability (CV = 74.8%). When considering the complex overall process the reproducibility of bioassays with eluates from construction products was acceptable

    Standardizing nomenclature in regional anesthesia:an ASRA-ESRA Delphi consensus study of upper and lower limb nerve blocks

    No full text
    Background: Inconsistent nomenclature and anatomical descriptions of regional anesthetic techniques hinder scientific communication and engender confusion; this in turn has implications for research, education and clinical implementation of regional anesthesia. Having produced standardized nomenclature for abdominal wall, paraspinal and chest wall regional anesthetic techniques, we aimed to similarly do so for upper and lower limb peripheral nerve blocks. Methods: We performed a three-round Delphi international consensus study to generate standardized names and anatomical descriptions of upper and lower limb regional anesthetic techniques. A long list of names and anatomical description of blocks of upper and lower extremities was produced by the members of the steering committee. Subsequently, two rounds of anonymized voting and commenting were followed by a third virtual round table to secure consensus for items that remained outstanding after the first and second rounds. As with previous methodology, strong consensus was defined as ≥75% agreement and weak consensus as 50%-74% agreement. Results: A total of 94, 91 and 65 collaborators participated in the first, second and third rounds, respectively. We achieved strong consensus for 38 names and 33 anatomical descriptions, and weak consensus for five anatomical descriptions. We agreed on a template for naming peripheral nerve blocks based on the name of the nerve and the anatomical location of the blockade and identified several areas for future research. Conclusions: We achieved consensus on nomenclature and anatomical descriptions of regional anesthetic techniques for upper and lower limb nerve blocks, and recommend using this framework in clinical and academic practice. This should improve research, teaching and learning of regional anesthesia to eventually improve patient care.</p

    Standardizing nomenclature in regional anesthesia:an ASRA-ESRA Delphi consensus study of upper and lower limb nerve blocks

    No full text
    Background: Inconsistent nomenclature and anatomical descriptions of regional anesthetic techniques hinder scientific communication and engender confusion; this in turn has implications for research, education and clinical implementation of regional anesthesia. Having produced standardized nomenclature for abdominal wall, paraspinal and chest wall regional anesthetic techniques, we aimed to similarly do so for upper and lower limb peripheral nerve blocks. Methods: We performed a three-round Delphi international consensus study to generate standardized names and anatomical descriptions of upper and lower limb regional anesthetic techniques. A long list of names and anatomical description of blocks of upper and lower extremities was produced by the members of the steering committee. Subsequently, two rounds of anonymized voting and commenting were followed by a third virtual round table to secure consensus for items that remained outstanding after the first and second rounds. As with previous methodology, strong consensus was defined as ≥75% agreement and weak consensus as 50%-74% agreement. Results: A total of 94, 91 and 65 collaborators participated in the first, second and third rounds, respectively. We achieved strong consensus for 38 names and 33 anatomical descriptions, and weak consensus for five anatomical descriptions. We agreed on a template for naming peripheral nerve blocks based on the name of the nerve and the anatomical location of the blockade and identified several areas for future research. Conclusions: We achieved consensus on nomenclature and anatomical descriptions of regional anesthetic techniques for upper and lower limb nerve blocks, and recommend using this framework in clinical and academic practice. This should improve research, teaching and learning of regional anesthesia to eventually improve patient care.</p
    corecore