408 research outputs found

    Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro

    Get PDF
    AbstractReceptors for the vitamin folic acid are frequently overexpressed on epithelial cancer cells. To examine whether this overexpression might be exploited to specifically deliver liposome-encapsulated drug molecules in vitro, folate-targeted liposomes were prepared by incorporating 0.1 mol% of a folate-polyethyleneglycol-distearoylphosphatidylethanolamine (folate-PEG-DSPE) construct into the lipid bilayer, and were loaded with doxorubicin (DOX), an anti-cancer drug. Uptake of folate-PEG-liposomal DOX by KB cells was 45-fold higher than that of non-targeted liposomal DOX, and 1.6-times higher than that of free DOX, while the cytotoxicity was 86 and 2.7-times higher, respectively. Folate-targeting is fully compatible with PEG-coating of the liposomes, since incorporation of 4 mol% PEG2000-DSPE does not reduce the uptake or cytotoxicity of folate-PEG-liposomal DOX. Uptake of folate-PEG-liposomes was inhibited by 1 mM free folic acid but was unaffected by physiological concentrations of folate. In HeLa/W138 co-cultures, folate-PEG-liposomes encapsulating calcein, a fluorescent dye, were found to be almost exclusively internalized by the HeLa cells which overexpress the folate receptors. We suggest that folate targeting constitutes a possible mechanism for improving the specificity of PEG-coated liposomes for cancer cells

    Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis

    Get PDF
    Damaged or old erythrocytes are cleared rapidly from circulation. Because several common biochemical lesions can induce the clustering of integral membrane proteins, we have proposed that formation of microscopic protein aggregates in the membrane might constitute a cell surface marker that promotes removal of the defective/senescent cells. We demonstrate here that treatments that cluster integral membrane proteins in erythrocytes (1 mM ZnCl2, 1 mM acridine orange, and 0.35 microM melittin) induce autologous IgG binding, complement fixation, and phagocytosis by human monocytes in vitro. Removal of the clustering agents prior to incubation in autologous serum or cross-linking of cell surface proteins before addition of clustering agents prohibited the above response, while cross-linking after treatment with the clustering agents preserved the response even if the clustering agents were later removed. Furthermore, subsequent reversal of the chemical cross-link maintaining the clustered distribution also reversed the induction of IgG binding, complement deposition, and phagocytosis. Finally, by deleting or inactivating different steps in the phagocytosis pathway, the chronology of steps was shown to be: (i) integral protein clustering, (ii) IgG binding, (iii) complement deposition, and (iv) phagocytosis

    Targeting Neuropeptides to Bone Fractures for Accelerated Healing

    Get PDF
    In patients over the age of 65 especially, bone fractures represent a significant disease burden. Non-invasive drug therapies are not available for bone fractures which represents a problem for this population. Vasoactive intestinal peptide (VIP) and Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), two neuromodulator peptides in the glucagon superfamily, have demonstrated positive regulation of osteoblast proliferation and activity. Using acidic oligopeptides, we have developed ligands that target to and accumulate at fracture sites. These targeting ligands can be synthesized in sequence with bone anabolic peptides to minimize off target effects and increase potency at the fracture site to create safer and more efficacious therapeutic molecules. The conjugation of PACAP and VIP to acidic oligopeptide targeting ligands results in compounds that demonstrate significant improvements in regeneration of bone at fracture site in vivo in terms of strength and mineralization of fracture callus

    Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis.

    Get PDF
    Previous studies demonstrated that the in vitro tyrosine phosphorylation of the human erythrocyte anion transporter, band 3, prevented the binding of various glycolytic enzymes to the N terminus of the cytoplasmic tail. Since these enzymes are inhibited in their bound state, the functional consequences of band 3 tyrosine phosphorylation in the red cell should be to activate the enzymes and elevate glycolysis. We searched for various enhancers of band 3 tyrosine phosphorylation using a novel assay designed to measure the phosphotyrosine levels at the band 3 tyrosine phosphorylation/glycolytic enzyme-binding site. This assay measures the extent of phosphorylation of a synthetic band 3 peptide entrapped within resealed red cells. Using this assay, three distinct compounds, all mild oxidants, were found to stimulate the tyrosine phosphorylation of band 3. All three compounds were also found to elevate glycolytic rates in intact erythrocytes. Moreover, the antitumor drug adriamycin was found to coordinately prevent these agents from stimulating both band 3 tyrosine phosphorylation and erythrocyte glycolysis. These results suggest a possible function for a protein tyrosine kinase in human erythrocytes, to regulate glycolysis through the tyrosine phosphorylation of band 3

    Inhibition of an erythrocyte tyrosine kinase with imatinib prevents Plasmodium falciparum egress and terminates parasitemia

    Get PDF
    With half of the world's population at risk for malaria infection and with drug resistance on the rise, the search for mutation-resistant therapies has intensified. We report here a therapy for Plasmodium falciparum malaria that acts by inhibiting the phosphorylation of erythrocyte membrane band 3 by an erythrocyte tyrosine kinase. Because tyrosine phosphorylation of band 3 causes a destabilization of the erythrocyte membrane required for parasite egress, inhibition of the erythrocyte tyrosine kinase leads to parasite entrapment and termination of the infection. Moreover, because one of the kinase inhibitors to demonstrate antimalarial activity is imatinib, i.e. an FDA-approved drug authorized for use in children, translation of the therapy into the clinic will be facilitated. At a time when drug resistant strains of P. falciparum are emerging, a strategy that targets a host enzyme that cannot be mutated by the parasite should constitute a therapeutic mechanism that will retard evolution of resistance

    A Folate Receptor Beta-Specific Human Monoclonal Antibody Recognizes Activated Macrophage of Rheumatoid Patients and Mediates Antibody-Dependent Cell-Mediated Cytotoxicity.

    Get PDF
    Introduction Folate receptor beta (FRβ) is only detectable in placenta and limited to some hematopoietic cells of myeloid lineage in healthy people. Studies have indicated that FRβ is over-expressed in activated macrophages in autoimmune diseases and some cancer cells. In this study we aimed to develop an FRβ-specific human monoclonal antibody (mAb) that could be used as a therapeutic agent to treat rheumatoid arthritis and other autoimmune diseases, as well as FRβ positive cancers. Methods Functional recombinant FRβ protein was produced in insect cells and used as antigen to isolate a mAb, m909, from a human naïve Fab phage display library. Binding of Fab and IgG1 m909 to FRβ was measured by ELISA, surface plasmon resonance, immune fluorescence staining, and flow cytometry. Antibody-dependent cell-mediated cytotoxicity (ADCC) was evaluated with FRβ positive CHO cells as target cells and isolated peripheral blood monocytes as effector cells in an in vitroassay. Results Fab m909 bound with relatively high affinity (equilibrium dissociation constant 57 nM) to FRβ. The IgG1 m909 showed much higher (femtomolar) avidity as measured by ELISA, and it bound to FRβ positive cells in a dose-dependent manner, but not to parental FRβ negative cells. m909 did not compete with folate for the binding to FRβ on cells. m909 was not only able to select FRβ positive, activated macrophages from synovial fluid cells of arthritis patients as efficiently as folate, but also able to mediate ADCC in FRβ positive cells. Conclusions Unlike folate-drug conjugates, m909 selectively binds to FRβ, does not recognize FRα, and has at least one effector function. m909 alone has potential to eliminate FRβ positive cells. Because m909 does not compete with folate for receptor binding, it can be used with folate-drug conjugates in a combination therapy. m909 can also be a valuable research reagent

    Folate-targeted immunotherapy effectively treats established adjuvant and collagen-induced arthritis

    Get PDF
    Activated macrophages express a cell surface receptor for the vitamin folic acid. Because this receptor is inaccessible or not measurably expressed on other normal cells, folic acid has been recently exploited to selectively deliver attached radio-emitters to sites of activated macrophage accumulation, allowing scintigraphic imaging of inflamed joints and organs of arthritic rats. We demonstrate here that folate-linked haptens can also be targeted to activated macrophages, decorating their cell surfaces with highly immunogenic molecules. Under conditions in which the rodent has already been immunized against keyhole limpet hemocyanine-(fluorescein isothiocyanate) FITC, activated macrophages are eliminated. Administration of folate-FITC conjugates to rodents with experimental arthritis attenuates (a) systemic and peri-articular inflammation, (b) bone and cartilage degradation, and (c) arthritis-related body weight loss. Treatment with folate-hapten conjugates is comparable to methotrexate, etanercept, anakinra, and celecoxib at alleviating the symptoms of arthritis. We conclude that reduction of activated macrophages by folate-targeted immunotherapy can ameliorate the symptoms of arthritis in two rodent models of the disease

    Dysfunctional stem and progenitor cells impair fracture healing with age

    Get PDF
    Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly
    corecore