2,055 research outputs found

    Design of the iLocater Acquisition Camera Demonstration System

    Full text link
    Existing planet-finding spectrometers are limited by systematic errors that result from their seeing-limited design. Of particular concern is the use of multi-mode fibers (MMFs), which introduce modal noise and accept significant amounts of background radiation from the sky. We present the design of a single-mode fiber-based acquisition camera for a diffraction-limited spectrometer named "iLocater." By using the "extreme" adaptive optics (AO) system of the Large Binocular Telescope (LBT), iLocater will overcome the limitations that prevent Doppler instruments from reaching their full potential, allowing precise radial velocity (RV) measurements of terrestrial planets around nearby bright stars. The instrument presented in this paper, which we refer to as the acquisition camera "demonstration system," will measure on-sky single-mode fiber (SMF) coupling efficiency using one of the 8.4m primaries of the LBT in fall 2015

    Six year follow-up of students who participated in a school-based physical activity intervention: a longitudinal cohort study

    Get PDF
    Background: The purpose of this paper was to evaluate the long-term impact of a childhood motor skill intervention on adolescent motor skills and physical activity. Methods: In 2006, we undertook a follow-up of motor skill proficiency (catch, kick, throw, vertical jump, side gallop) and physical activity in adolescents who had participated in a one year primary school intervention Move It Groove It (MIGI) in 2000. Logistic regression models were analysed for each skill to determine whether the probability of children in the intervention group achieving mastery or near mastery was either maintained or had increased in subsequent years, relative to controls. In these models the main predictor variable was intervention status, with adjustment for gender, grade, and skill level in 2000. A general linear model, controlling for gender and grade, examined whether former intervention students spent more time in moderate-to-vigorous physical activity at follow-up than control students. Results: Half (52%, n = 481) of the 928 MIGI participants were located in 28 schools, with 276 (57%) assessed. 52% were female, 58% in Grade 10, 40% in Grade 11 and 54% were former intervention students. At follow-up, intervention students had improved their catch ability relative to controls and were five times more likely to be able to catch: OR catch = 5.51, CI (1.95 - 15.55), but had lost their advantage in the throw and kick: OR throw = .43, CI (.23 - .82), OR kick = .39, CI (.20 - .78). For the other skills, intervention students appeared to maintain their advantage: OR jump = 1.14, CI (.56 - 2.34), OR gallop = 1.24, CI (.55 - 2.79). Intervention students were no more active at follow-up. Conclusion: Six years after the 12-month MIGI intervention, whilst intervention students had increased their advantage relative to controls in one skill, and appeared to maintain their advantage in two, they lost their advantage in two skills and were no more active than controls at follow up. More longitudinal research is needed to explore whether gains in motor skill proficiency in children can be sustained and to determine the intervention characteristics that translate to subsequent physical activity

    Defining childhood severe falciparum malaria for intervention studies.

    Get PDF
    Background Clinical trials of interventions designed to prevent severe falciparum malaria in children require a clear endpoint. The internationally accepted definition of severe malaria is sensitive, and appropriate for clinical purposes. However, this definition includes individuals with severe nonmalarial disease and coincident parasitaemia, so may lack specificity in vaccine trials. Although there is no “gold standard” individual test for severe malaria, malaria-attributable fractions (MAFs) can be estimated among groups of children using a logistic model, which we use to test the suitability of various case definitions as trial endpoints. Methods and Findings A total of 4,583 blood samples were taken from well children in cross-sectional surveys and from 1,361 children admitted to a Kenyan District hospital with severe disease. Among children under 2 y old with severe disease and over 2,500 parasites per microliter of blood, the MAFs were above 85% in moderate- and low-transmission areas, but only 61% in a high-transmission area. HIV and malnutrition were not associated with reduced MAFs, but gastroenteritis with severe dehydration (defined by reduced skin turgor), lower respiratory tract infection (clinician's final diagnosis), meningitis (on cerebrospinal fluid [CSF] examination), and bacteraemia were associated with reduced MAFs. The overall MAF was 85% (95% confidence interval [CI] 83.8%–86.1%) without excluding these conditions, 89% (95% CI 88.4%–90.2%) after exclusions, and 95% (95% CI 94.0%–95.5%) when a threshold of 2,500 parasites/μl was also applied. Applying a threshold and exclusion criteria reduced sensitivity to 80% (95% CI 77%–83%). Conclusions The specificity of a case definition for severe malaria is improved by applying a parasite density threshold and by excluding children with meningitis, lower respiratory tract infection (clinician's diagnosis), bacteraemia, and gastroenteritis with severe dehydration, but not by excluding children with HIV or malnutrition

    Bolocam: a millimeter-wave bolometric camera

    Get PDF
    We describe the design of Bolocam, a bolometric camera for millimeter-wave observations at the Caltech Submillimeter Observatory. Bolocam will have 144 diffraction-limited detectors operating at 300 mK, an 8 arcminute field of view, and a sky noise limited NEFD of approximately 35 mJy Hz^(-1/2) per pixel at λ = 1.4 mm. Observations will be possible at one of (lambda) equals 1.1., 1.4, or 2.1 mm per observing run. The detector array consists of sensitive NTD Ge thermistors bonded to silicon nitride micromesh absorbers patterned on a single wafer of silicon. This is a new technology in millimeter-wave detector array construction. To increase detector packing density, the feed horns will be spaced by 1.26 fλ (at λ = 1.4 mm), rather than the conventional 2fλ . DC stable read out electronics will enable on-the-fly mapping and drift scanning. We will use Bolocam to map Galactic dust emission, to search for protogalaxies, and to observe the Sunyaev- Zel'dovich effect toward galaxy clusters

    Understanding Dwarf Galaxies in order to Understand Dark Matter

    Full text link
    Much progress has been made in recent years by the galaxy simulation community in making realistic galaxies, mostly by more accurately capturing the effects of baryons on the structural evolution of dark matter halos at high resolutions. This progress has altered theoretical expectations for galaxy evolution within a Cold Dark Matter (CDM) model, reconciling many earlier discrepancies between theory and observations. Despite this reconciliation, CDM may not be an accurate model for our Universe. Much more work must be done to understand the predictions for galaxy formation within alternative dark matter models.Comment: Refereed contribution to the Proceedings of the Simons Symposium on Illuminating Dark Matter, to be published by Springe

    New OH Zeeman measurements of magnetic field strengths in molecular clouds

    Get PDF
    We present the results of a new survey of 23 molecular clouds for the Zeeman effect in OH undertaken with the ATNF Parkes 64-m radio telescope and the NRAO Green Bank 43-m radio telescope. The Zeeman effect was clearly detected in the cloud associated with the HII region RCW 38, with a field strength of 38+/-3 micro-Gauss, and possibly detected in a cloud associated with the HII region RCW 57, with a field strength of -203+/-24 micro-Gauss. The remaining 21 measurements give formal upper limits to the magnetic field strength, with typical 1-sigma sensitivities <20 micro-Gauss. For 22 of the molecular clouds we are also able to determine thecolumn density of the gas in which we have made a sensitive search for the Zeeman effect. We combine these results with previous Zeeman studies of 29 molecular clouds, most of which were compiled by Crutcher (1999), for a comparsion of theoretical models with the data. This comparison implies that if the clouds can be modeled as initially spherical with uniform magnetic fields and densities that evolve to their final equilibrium state assuming flux-freezing then the typical cloud is magnetically supercritical, as was found by Crutcher (1999). If the clouds can be modeled as highly flattened sheets threaded by uniform perpendicular fields, then the typical cloud is approximately magnetically critical, in agreement with Shu et al. (1999), but only if the true values of the field for the non-detections are close to the 3-sigma upper limits. If instead these values are significantly lower (for example, similar to the 1-sigma limits), then the typical cloud is generally magnetically supercritical.Comment: 39 pages, 7 figures. Accepted for publication in Ap
    corecore