25 research outputs found

    Hybrid PET- and MR-driven attenuation correction for enhanced ¹⁸F-NaF and ¹⁸F-FDG quantification in cardiovascular PET/MR imaging

    Get PDF
    Background: The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from ¹⁸F-Sodium Fluoride (¹⁸F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for ¹⁸F-NaF and ¹⁸F-Fluorodeoxyglucose (¹⁸F-FDG) PET/MR cardiovascular imaging. Methods: We introduce 5-class Ki/MR-AC for (i) ¹⁸F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) ¹⁸F-FDG-only data, with a streamlined simultaneous administration of ¹⁸F-FDG and ¹⁸F-NaF at 4:1 ratio (R4:1), or (iii) for ¹⁸F-FDG-only or both ¹⁸F-FDG and ¹⁸F-NaF dual-tracer data, by administering ¹⁸F-NaF 90 minutes after an equal ¹⁸F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). Results: In rabbits, we observed similar (< 1.2% mean difference) vertebral bone ¹⁸F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (¹⁸F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher ¹⁸F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean ¹⁸F-FDG:¹⁸F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (¹⁸F-FDG) and 15.5% (¹⁸F-NaF) at carotid bifurcations and 21.6% (¹⁸F-FDG) and 22.5% (¹⁸F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. Conclusions: Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance ¹⁸F-NaF and ¹⁸F-FDG contrast and quantification in bone tissues and carotid walls

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    ACCF/SCAI/AATS/AHA/ASE/ASNC/HFSA/HRS/SCCM/SCCT/SCMR/STS 2012 appropriate use criteria for diagnostic catheterization: American College of Cardiology Foundation Appropriate Use Criteria Task Force Society for Cardiovascular Angiography and Interventions American Association for Thoracic Surgery American Heart Association, American Society of Echocardiography American Society of Nuclear Cardiology Heart Failure Society of America Heart Rhythm Society, Society of Critical Care Medicine Society of C

    No full text
    The American College of Cardiology Foundation, in collaboration with the Society for Cardiovascular Angiography and Interventions and key specialty and subspecialty societies, conducted a review of common clinical scenarios where diagnostic catheterization is frequently considered. The indications (clinical scenarios) were derived from common applications or anticipated uses, as well as from current clinical practice guidelines and results of studies examining the implementation of noninvasive imaging appropriate use criteria. The 166 indications in this document were developed by a diverse writing group and scored by a separate independent technical panel on a scale of 1 to 9, to designate appropriate use (median 7 to 9), uncertain use (median 4 to 6), and inappropriate use (median 1 to 3). Diagnostic catheterization may include several different procedure components. The indications developed focused primarily on 2 aspects of diagnostic catheterization. Many indications focused on the performance of coronary angiography for the detection of coronary artery disease with other procedure components (e.g., hemodynamic measurements, ventriculography) at the discretion of the operator. The majority of the remaining indications focused on hemodynamic measurements to evaluate valvular heart disease, pulmonary hypertension, cardiomyopathy, and other conditions, with the use of coronary angiography at the discretion of the operator. Seventy-five indications were rated as appropriate, 49 were rated as uncertain, and 42 were rated as inappropriate. The appropriate use criteria for diagnostic catheterization have the potential to impact physician decision making, healthcare delivery, and reimbursement policy. Furthermore, recognition of uncertain clinical scenarios facilitates identification of areas that would benefit from future research. © 2012 Wiley Periodicals, Inc

    ACC/AATS/AHA/ASE/EACTS/HVS/SCA/SCAI/SCCT/SCMR/STS 2017 Appropriate use criteria for the treatment of patients with severe aortic stenosis

    No full text
    Abstract The American College of Cardiology collaborated with the American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Valve Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons to develop and evaluate Appropriate Use Criteria (AUC) for the treatment of patients with severe aortic stenosis (AS). This is the first AUC to address the topic of AS and its treatment options, including surgical aortic valve replacement and transcatheter aortic valve replacement. A number of common patient scenarios experienced in daily practice were developed along with assumptions and definitions for those scenarios, which were all created using guidelines, clinical trial data and expert opinion in the field of AS. The ‘2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines’ [1] and its 2017 focused update paper [2] were used as the primary guiding references in developing these indications. The Writing Group identified 95 clinical scenarios based on patient symptoms and clinical presentation, and up to 6 potential treatment options for those patients. A separate, independent Rating Panel was asked to score each indication from 1 to 9, with 1–3 categorized as ‘Rarely Appropriate’, 4–6 as ‘May Be Appropriate’ and 7–9 as ‘Appropriate’. After considering factors such as symptom status, left ventricular function, surgical risk, and the presence of concomitant coronary or other valve disease, the Rating Panel determined that either surgical aortic valve replacement or transcatheter aortic valve replacement is appropriate in most patients with symptomatic AS at intermediate or high surgical risk; however, situations commonly arise in clinical practice in which the indications for surgical aortic valve replacement or transcatheter aortic valve replacement are less clear, including situations in which one form of valve replacement would appear reasonable when the other is less so, as do other circumstances in which neither intervention is the suitable treatment option. The purpose of this AUC is to provide guidance to clinicians in the care of patients with severe AS by identifying the reasonable treatment and intervention options available based on the myriad clinical scenarios with which patients present. This AUC document also serves as an educational and quality improvement tool to identify patterns of care and reduce the number of rarely appropriate interventions in clinical practice

    ACC/AATS/AHA/ASE/EACTS/HVS/SCA/SCAI/SCCT/SCMR/STS 2017 Appropriate Use Criteria for the Treatment of Patients With Severe Aortic Stenosis: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Valve Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Intervent

    No full text
    The American College of Cardiology collaborated with the American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, European Association for Cardio-Thoracic Surgery, Heart Valve Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons to develop and evaluate Appropriate Use Criteria (AUC) for the treatment of patients with severe aortic stenosis (AS). This is the first AUC to address the topic of AS and its treatment options, including surgical aortic valve replacement (SAVR) and transcatheter aortic valve replacement (TAVR). A number of common patient scenarios experienced in daily practice were developed along with assumptions and definitions for those scenarios, which were all created using guidelines, clinical trial data, and expert opinion in the field of AS. The 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines(1) and its 2017 focused update paper (2) were used as the primary guiding references in developing these indications. The writing group identified 95 clinical scenarios based on patient symptoms and clinical presentation, and up to 6 potential treatment options for those patients. A separate, independent rating panel was asked to score each indication from 1 to 9, with 1-3 categorized as "Rarely Appropriate," 4-6 as "May Be Appropriate," and 7-9 as "Appropriate." After considering factors such as symptom status, left ventricular (LV) function, surgical risk, and the presence of concomitant coronary or other valve disease, the rating panel determined that either SAVR or TAVR is Appropriate in most patients with symptomatic AS at intermediate or high surgical risk; however, situations commonly arise in clinical practice in which the indications for SAVR or TAVR are less clear, including situations in which 1 form of valve replacement would appear reasonable when the other is less so, as do other circumstances in which neither intervention is the suitable treatment option. The purpose of this AUC is to provide guidance to clinicians in the care of patients with severe AS by identifying the reasonable treatment and intervention options available based on the myriad clinical scenarios with which patients present. This AUC document also serves as an educational and quality improvement tool to identify patterns of care and reduce the number of rarely appropriate interventions in clinical practice
    corecore