4,192 research outputs found

    Geometry and Dynamics with Time-Dependent Constraints

    Get PDF
    We describe how geometrical methods can be applied to a system with explicitly time-dependent second-class constraints so as to cast it in Hamiltonian form on its physical phase space. Examples of particular interest are systems which require time-dependent gauge fixing conditions in order to reduce them to their physical degrees of freedom. To illustrate our results we discuss the gauge-fixing of relativistic particles and strings moving in arbitrary background electromagnetic and antisymmetric tensor fields.Comment: 8 pages, Plain TeX, CERN-TH.7392/94 and MPI-PhT/94-4

    Jet-ISM Interaction in the Radio Galaxy 3C293: Jet-driven Shocks Heat ISM to Power X-ray and Molecular H2 emission

    Get PDF
    We present a 70ks Chandra observation of the radio galaxy 3C293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 10^7 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C293, typically have LH2/LX~1 and MH2/MX~1, whereas MOHEGs that are BCGs have LH2/LX~0.01 and MH2/MX~0.01. The more massive, virialized, hot atmosphere in BCGs overwhelms any direct X-ray emission from current jet-ISM interaction. On the other hand, LH2/LX~1 in the Spiderweb BCG at z=2, which resides in an unvirialized protocluster and hosts a powerful radio source. Over time, jet-ISM interaction may contribute to the establishment of a hot atmosphere in BCGs and other massive elliptical galaxies.Comment: Accepted by ApJ 21 pages in ApJ format, 9 figures, 8 table

    Building bridges in the classroom: A view from the academy

    Get PDF
    Over the past two decades, the rise of specialist practice in the area of construction law has led to – and been fostered by – a proliferation in construction law teaching. This article examines this trend, offering observations about what makes for “best practice” in teaching students across construction-related disciplines – lawyers, construction professionals, undergraduates and graduates – and how the academy can assist in building bridges between those disciplines

    The Spitzer c2d Survey of Nearby Dense Cores. IX. Discovery of a Very Low Luminosity Object Driving a Molecular Outflow in the Dense Core L673-7

    Full text link
    We present new infrared, submillimeter, and millimeter observations of the dense core L673-7 and report the discovery of a low-luminosity, embedded Class 0 protostar driving a molecular outflow. L673-7 is seen in absorption against the mid-infrared background in 5.8, 8, and 24 micron Spitzer images, allowing for a derivation of the column density profile and total enclosed mass of L673-7, independent of dust temperature assumptions. Estimates of the core mass from these absorption profiles range from 0.2-4.5 solar masses. Millimeter continuum emission indicates a mass of about 2 solar masses, both from a direct calculation assuming isothermal dust and from dust radiative transfer models constrained by the millimeter observations. We use dust radiative transfer models to constrain the internal luminosity of L673-7, defined to be the luminosity of the central source and excluding the luminosity from external heating, to be 0.01-0.045 solar luminosities, with 0.04 solar luminosities the most likely value. L673-7 is thus classified as a very low luminosity object (VeLLO), and is among the lowest luminosity VeLLOs yet studied. We calculate the kinematic and dynamic properties of the molecular outflow in the standard manner, and we show that the expected accretion luminosity based on these outflow properties is greater than or equal to 0.36 solar luminosities. The discrepancy between this expected accretion luminosity and the internal luminosity derived from dust radiative transfer models indicates that the current accretion rate is much lower than the average rate over the lifetime of the outflow. Although the protostar embedded within L673-7 is consistent with currently being substellar, it is unlikely to remain as such given the substantial mass reservoir remaining in the core.Comment: 19 pages, 14 figures. Accepted by Ap

    Single-Bottleneck Approximation for Driven Lattice Gases with Disorder and Open Boundary Conditions

    Full text link
    We investigate the effects of disorder on driven lattice gases with open boundaries using the totally asymmetric simple exclusion process as a paradigmatic example. Disorder is realized by randomly distributed defect sites with reduced hopping rate. In contrast to equilibrium, even macroscopic quantities in disordered non-equilibrium systems depend sensitively on the defect sample. We study the current as function of the entry and exit rates and the realization of disorder and find that it is, in leading order, determined by the longest stretch of consecutive defect sites (single-bottleneck approximation, SBA). Using results from extreme value statistics the SBA allows to study ensembles with fixed defect density which gives accurate results, e.g. for the expectation value of the current. Corrections to SBA come from effective interactions of bottlenecks close to the longest one. Defects close to the boundaries can be described by effective boundary rates and lead to shifts of the phase transitions. Finally it is shown that the SBA also works for more complex models. As an example we discuss a model with internal states that has been proposed to describe transport of the kinesin KIF1A.Comment: submitted to J. Stat. Mec

    Statistical limitations in ion imaging

    Get PDF
    In this study, we investigated the capacity of various ion beams available for radiotherapy to produce high quality relative stopping power map acquired from energy-loss measurements. The image quality metrics chosen to compare the different ions were signal-to-noise ratio (SNR) as a function of dose and spatial resolution. Geant4 Monte Carlo simulations were performed for: hydrogen, helium, lithium, boron and carbon ion beams crossing a 20 cm diameter water phantom to determine SNR and spatial resolution. It has been found that protons possess a significantly larger SNR when compared with other ions at a fixed range (up to 36% higher than helium) due to the proton nuclear stability and low dose per primary. However, it also yields the lowest spatial resolution against all other ions, with a resolution lowered by a factor 4 compared to that of carbon imaging, for a beam with the same initial range. When comparing for a fixed spatial resolution of 10 lp cm−1, carbon ions produce the highest image quality metrics with proton ions producing the lowest. In conclusion, it has been found that no ion can maximize all image quality metrics simultaneously and that a choice must be made between spatial resolution, SNR, and dose
    • 

    corecore