2 research outputs found

    Computer Simulation of Anisotropic Polymeric Materials Using Polymerization-Induced Phase Separation under Combined Temperature and Concentration Gradients

    No full text
    In this study, the self-condensation polymerization of a tri-functional monomer in a monomer-solvent mixture and the phase separation of the system were simultaneously modeled and simulated. Nonlinear Cahn-Hilliard and Flory-Huggins free energy theories incorporated with the kinetics of the polymerization reaction were utilized to develop the model. Linear temperature and concentration gradients singly and in combination were applied to the system. Eight cases which faced different ranges of initial concentration and/or temperature gradients in different directions, were studied. Various anisotropic structural morphologies were achieved. The numerical results were in good agreement with published data. The size analysis and structural characterization of the phase-separated system were also carried out using digital imaging software. The results showed that the phase separation occurred earlier in the section with a higher initial concentration and/or temperature, and, at a given time, the average equivalent diameter of the droplets was larger in this region. While smaller droplets formed later in the lower concentration/temperature regions, at the higher concentration/temperature side, the droplets went through phase separation longer, allowing them to reach the late stage of the phase separation where particles coarsened. In the intermediate stage of phase separation, was found proportional to t*(alpha), where alpha was in the range between 1/3 and 1/2 for the cases studied and was consistent with published results. </p

    Long-Range Surface-Directed Polymerization-Induced Phase Separation: A Computational Study

    No full text
    The presence of a surface preferably attracting one component of a polymer mixture by the long-range van der Waals surface potential while the mixture undergoes phase separation by spinodal decomposition is called long-range surface-directed spinodal decomposition (SDSD). The morphology achieved under SDSD is an enrichment layer(s) close to the wall surface and a droplet-type structure in the bulk. In the current study of the long-range surface-directed polymerization-induced phase separation, the surface-directed spinodal decomposition of a monomer-solvent mixture undergoing self-condensation polymerization was theoretically simulated. The nonlinear Cahn-Hilliard and Flory-Huggins free energy theories were applied to investigate the phase separation phenomenon. The long-range surface potential led to the formation of a wetting layer on the surface. The thickness of the wetting layer was found proportional to time t*(1/5) and surface potential parameter h(1)(1/5). A larger diffusion coefficient led to the formation of smaller droplets in the bulk and a thinner depletion layer, while it did not affect the thickness of the enrichment layer close to the wall. A temperature gradient imposed in the same direction of long-range surface potential led to the formation of a stripe morphology near the wall, while imposing it in the opposite direction of surface potential led to the formation of large particles at the high-temperature side, the opposite side of the interacting wall. </p
    corecore