3 research outputs found

    Visible Light-Driven Pure Water Splitting by a Nature-Inspired Organic Semiconductor-Based System

    No full text
    For the first time, it is demonstrated that the robust organic semiconductor g-C<sub>3</sub>N<sub>4</sub> can be integrated into a nature-inspired water splitting system, analogous to PSII and PSI in natural photosynthesis. Two parallel systems have been developed for overall water splitting under visible light involving graphitic carbon nitride with two different metal oxides, BiVO<sub>4</sub> and WO<sub>3</sub>. Consequently, both hydrogen and oxygen can be evolved in an ideal ratio of 2:1, and evolution rates in both systems have been found to be dependent on pH, redox mediator concentration, and mass ratio between the two photocatalysts, leading to a stable and reproducible H<sub>2</sub> and O<sub>2</sub> evolution rate at 36 and 18 μmol h<sup>–1</sup> g<sup>–1</sup> from water over 14 h. Our findings demonstrate g-C<sub>3</sub>N<sub>4</sub> can serve as a multifunctional robust photocatalyst, which could also be used in other systems such as PEC cells or coupled solar cell systems

    Phase-Tunable Calcium Phosphate Biomaterials Synthesis and Application in Protein Delivery

    No full text
    Calcium phosphates (CaP) are important biomaterials used in tissue engineering and drug delivery, due to their biocompatibility, low toxicity, and osteoconductivity. However, controlling the phase of CaP, especially tricalcium phosphate (TCP), is very challenging under mild conditions, particularly when using one preparation protocol for all CaP phases. It is also crucial to produce these biomaterials economically and reproducibly. Herein, three of the most commonly employed CaP, including beta-tricalcium phosphate (β-TCP), dicalcium phosphate anhydrous (DCPA), and hydroxyapatite (HA) were, for the first time, successfully synthesized by altering the reaction solvent, using calcium acetate monohydrate as a precursor and a rapid microwave-assisted synthetic method. A variety of CaP particle morphologies were obtained, including elliptical and plate-shaped with different porosities. Compared with conventional heating, CaP biomaterials synthesized using microwave heating showed greater reproducibility, higher yields, and shorter reaction time. By varying the reaction solvents, morphologies and phases of CaP were controlled, leading to an enhanced protein bovine serum albumin (BSA) loading, with a higher BSA absorption observed according to the trend DCPA> β-TCP > HA. Furthermore, the phase, specific surface area, and pore size were shown to play decisive roles in protein desorption with a higher release amount observed according to the trend DCPA > β-TCP > HA. Finally, it is found that larger pores are also beneficial to BSA adsorption

    Organosilica Nanoparticles with an Intrinsic Secondary Amine: An Efficient and Reusable Adsorbent for Dyes

    Get PDF
    Nanomaterials are promising tools in water remediation because of their large surface area and unique properties compared to bulky materials. We synthesized an organosilica nanoparticle (OSNP) and tuned its composition for anionic dye removal. The adsorption mechanisms are electrostatic attraction and hydrogen bonding between the amine on OSNP and the dye, and the surface charge of the OSNP can be tuned to adsorb either anionic or cationic dyes. Using phenol red as a model dye, we studied the effect of the amine group, pH, ionic strength, time, dye concentration, and nanomaterial mass on the adsorption. The theoretical maximum adsorption capacity was calculated to be 175.44 mg/g (0.47 mmol/g), which is higher than 67 out of 77 reported adsorbents. The experimental maximum adsorption capacity is around 201 mg/g (0.53 mmol/g). Furthermore, the nanoparticles are highly reusable and show stable dye removal and recovery efficiency over at least 10 cycles. In summary, the novel adsorbent system derived from the intrinsic amine group within the frame of OSNP are reusable and tunable for anionic or cationic dyes with high adsorption capacity and fast adsorption. These materials may also have utility in drug delivery or as a carrier for imaging agents
    corecore