43 research outputs found

    Prostate Cancer Survivorship: Prevention and Treatment of the Adverse Effects of Androgen Deprivation Therapy

    Get PDF
    BACKGROUND: More than one-third of the estimated 2 million prostate cancer survivors in the United States receive androgen deprivation therapy (ADT). This population of mostly older men is medically vulnerable to a variety of treatment-associated adverse effects. MEASUREMENTS AND RESULTS: Androgen-deprivation therapy (ADT) causes loss of libido, vasomotor flushing, anemia, and fatigue. More recently, ADT has been shown to accelerate bone loss, increase fat mass, increase cholesterol and triglycerides, and decrease insulin sensitivity. Consistent with these adverse metabolic effects, ADT has also recently been associated with greater risks for fractures, diabetes and cardiovascular disease. CONCLUSION: Primary care clinicians and patients should be aware of the potential benefits and harms of ADT. Screening and intervention to prevent treatment-related morbidity should be incorporated into the routine care of prostate cancer survivors. Evidence-based guidelines to prevent fractures, diabetes, and cardiovascular disease in prostate cancer survivors represent an important unmet need. We recommend the adapted use of established practice guidelines designed for the general population

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Bone targeted therapies for the prevention of skeletal morbidity in men with prostate

    No full text
    Men with prostate cancer suffer substantially from bone-related complications. Androgen deprivation therapy itself is a cause of loss of bone mineral density and is associated with an increased incidence of osteoporotic fractures. In advanced disease, bone is by far the most common site of metastasis. Complications of bone metastases prominently include pain and the potential for skeletal events such as spinal cord compression and pathologic fractures. Elevated osteoclast activity is an important aspect of the pathophysiology of both treatment-related osteoporosis and skeletal complications due to metastases. The osteoclast is therefore a therapeutic target. Denosumab is a fully human monoclonal antibody to receptor activator of nuclear factor-κ-B ligand that was designed to potently inhibit osteoclast activity and is the central focus of this review. Bisphosphonates, radiopharmaceuticals and systemically-active hormonal agents such as abiraterone acetate and enzalutamide have each been shown to improve skeletal morbidity in specific clinical situations. Denosumab is the only agent that has been shown to prevent osteoporotic fractures in men receiving androgen deprivation therapy and at elevated risk for fracture. It has also demonstrated superiority to the potent bisphosphonate zoledronic acid for the prevention of skeletal-related events in men with castration-resistant prostate cancer metastatic to bone. Efficacy and toxicity data will be discussed
    corecore