353 research outputs found

    Sexual Dimorphism in Chronic Hepatitis B Virus (HBV) Infection: Evidence to Inform Elimination Efforts [version 1; peer review: awaiting peer review]

    Get PDF
    Sexual dimorphism in infectious diseases refers to the different infection susceptibilities and outcomes between males and females, and has been described for many pathogens, including hepatitis B virus (HBV) infection. HBV is a substantial global health problem, with close to 300 million people infected, and accounting for a million deaths each year, with an urgent need for enhanced interventions to support progress towards elimination goals. Sexual dimorphism has a strong influence in HBV infection, with males more likely to be exposed, to develop chronic infection, and to suffer from complications including cirrhosis and hepatocellular carcinoma (HCC) compared to females. Different outcomes are driven by differential immune responses, sexual dimorphism of the liver, and androgen response elements in the HBV genome. The impact of sex may also vary with age, with changes at puberty and influences of menarche, pregnancy and menopause in females. In addition, gender has complex influences on education, beliefs, behaviour and access to / engagement with healthcare services, which may contribute to differences in diagnosis and treatment. Interplay between these complex factors, alongside other attributes of host, virus and the environment, accounts for different outcomes of infection. However, gaps remain in our understanding of sexual dimorphism in HBV, and little effort has previously been made to harness this knowledge for translational gains. In this review, we assimilate human and animal data to consider the mechanism, outcomes and impact of sexual dimorphism, considering how these insights can be used to inform advances in surveillance, treatment and prevention for HBV infection

    Sexual Dimorphism in Chronic Hepatitis B Virus (HBV) Infection: Evidence to Inform Elimination Efforts [version 2; peer review: 1 approved, 1 approved with reservations]

    Get PDF
    Sexual dimorphism in infectious diseases refers to the different infection susceptibilities and outcomes between males and females, and has been described for many pathogens, including hepatitis B virus (HBV). HBV is a substantial global health problem, with close to 300 million people chronically infected, and accounting for a million deaths each year, with an urgent need for enhanced interventions to support progress towards elimination goals. Sexual dimorphism has a strong influence in HBV infection, with males more likely to be exposed, to develop chronic infection, and to suffer from complications including cirrhosis and hepatocellular carcinoma (HCC) compared to females. Different outcomes are driven by differential immune responses, sexual dimorphism of the liver, and androgen response elements in the HBV genome. The impact of sex may also vary with age, with changes at puberty and influences of menarche, pregnancy and menopause in females. In addition, gender has complex influences on education, beliefs, behaviour and access to / engagement with healthcare services, which may contribute to differences in diagnosis and treatment. Interplay between these complex factors, alongside other attributes of host, virus and the environment, accounts for different outcomes of infection. However, gaps remain in our understanding of sexual dimorphism in HBV, and little effort has previously been made to harness this knowledge for translational gains. In this review, we assimilate human and animal data to consider the mechanism, outcomes and impact of sexual dimorphism, and consider how these insights can be used to inform advances in surveillance, treatment and prevention for HBV infection

    Role of HLA Adaptation in HIV Evolution

    Get PDF
    Killing of HIV-infected cells by CD8(+) T-cells imposes strong selection pressure on the virus toward escape. The HLA class I molecules that are successful in mediating some degree of control over the virus are those that tend to present epitopes in conserved regions of the proteome, such as in p24 Gag, in which escape also comes at a significant cost to viral replicative capacity (VRC). In some instances, compensatory mutations can fully correct for the fitness cost of such an escape variant; in others, correction is only partial. The consequences of these events within the HIV-infected host, and at the population level following transmission of escape variants, are discussed. The accumulation of escape mutants in populations over the course of the epidemic already shows instances of protective HLA molecules losing their impact, and in certain cases, a modest decline in HIV virulence in association with population-level increase in mutants that reduce VRC

    Sexual Dimorphism in Chronic Hepatitis B Virus (HBV) Infection: Evidence to Inform Elimination Efforts [version 3; peer review: 2 approved]

    Get PDF
    Sexual dimorphism in infectious diseases refers to the different infection susceptibilities and outcomes between males and females, and has been described for many pathogens, including hepatitis B virus (HBV). HBV is a substantial global health problem, with close to 300 million people chronically infected, and accounting for a million deaths each year, with an urgent need for enhanced interventions to support progress towards elimination goals. Sexual dimorphism has a strong influence in HBV infection, with males more likely to be exposed, to develop chronic infection, and to suffer from complications including cirrhosis and hepatocellular carcinoma (HCC) compared to females. Different outcomes are driven by differential immune responses, sexual dimorphism of the liver, and androgen response elements in the HBV genome. The impact of sex may also vary with age, with changes at puberty and influences of menarche, pregnancy and menopause in females. In addition, gender has complex influences on education, beliefs, behaviour and access to / engagement with healthcare services, which may contribute to differences in diagnosis and treatment. Interplay between these complex factors, alongside other attributes of host, virus and the environment, accounts for different outcomes of infection. However, gaps remain in our understanding of sexual dimorphism in HBV, and little effort has previously been made to harness this knowledge for translational gains. In this review, we assimilate human and animal data to consider the mechanism, outcomes and impact of sexual dimorphism, and consider how these insights can be used to inform advances in surveillance, treatment and prevention for HBV infection

    HIV-1 Subtype C-Infected Children with Exceptional Neutralization Breadth Exhibit Polyclonal Responses Targeting Known Epitopes

    Get PDF
    We have previously shown that HIV-1-infected children develop broader and more potent neutralizing antibody responses than adults. This study aimed to determine the antibody specificities in 16 HIV-1 subtype C-infected children who displayed exceptional neutralization breadth on a 22-multisubtype virus panel. All children were antiretroviral treatment (ART) naive with normal CD4 counts despite being infected for a median of 10.1 years with high viral loads. The specificity of broadly neutralizing antibodies (bNAbs) was determined using epitope-ablating mutants, chimeric constructs, and depletion or inhibition of activity with peptides and glycoproteins. We found that bNAbs in children largely targeted previously defined epitopes, including the V2-glycan, V3-glycan, CD4bs, and gp120-gp41 interface. Remarkably, 63% of children had antibodies targeting 2 or 3 and, in one case, 4 of these bNAb epitopes. Longitudinal analysis of plasma from a mother-child pair over 9 years showed that while they both had similar neutralization profiles, the antibody specificities differed. The mother developed antibodies targeting the V2-glycan and CD4bs, whereas bNAb specificities in the child could not be mapped until 6 years, when a minor V2-glycan response appeared. The child also developed high-titer membrane-proximal external region (MPER) binding antibodies not seen in the mother, although these were not a major bNAb specificity. Overall, exceptional neutralization breadth in this group of children may be the result of extended exposure to high antigenic load in the context of an intact immune system, which allowed for the activation of multiple B cell lineages and the generation of polyclonal responses targeting several bNAb epitopes. IMPORTANCE An HIV vaccine is likely to require bNAbs, which have been shown to prevent HIV acquisition in nonhuman primates. Recent evidence suggests that HIV-infected children are inherently better at generating bNAbs than adults. Here, we show that exceptional neutralization breadth in a group of viremic HIV-1 subtype C-infected children was due to the presence of polyclonal bNAb responses. These bNAbs targeted multiple epitopes on the HIV envelope glycoprotein previously defined in adult infection, suggesting that the immature immune system recognizes HIV antigens similarly. Since elicitation of a polyclonal bNAb response is the basis of next-generation HIV envelope vaccines, further studies of how bNAb lineages are stimulated in children is warranted. Furthermore, our findings suggest that children may respond particularly well to vaccines designed to elicit antibodies to multiple bNAb epitopes

    HIV-1 subtype C envelope characteristics associated with divergent rates of chronic disease progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 envelope diversity remains a significant challenge for the development of an efficacious vaccine. The evolutionary forces that shape the diversity of envelope are incompletely understood. HIV-1 subtype C envelope in particular shows significant differences and unique characteristics compared to its subtype B counterpart. Here we applied the single genome sequencing strategy of plasma derived virus from a cohort of therapy naïve chronically infected individuals in order to study diversity, divergence patterns and envelope characteristics across the entire HIV-1 subtype C gp160 in 4 slow progressors and 4 progressors over an average of 19.5 months.</p> <p>Results</p> <p>Sequence analysis indicated that intra-patient nucleotide diversity within the entire envelope was higher in slow progressors, but did not reach statistical significance (p = 0.07). However, intra-patient nucleotide diversity was significantly higher in slow progressors compared to progressors in the C2 (p = 0.0006), V3 (p = 0.01) and C3 (p = 0.005) regions. Increased amino acid length and fewer potential N-linked glycosylation sites (PNGs) were observed in the V1-V4 in slow progressors compared to progressors (p = 0.009 and p = 0.02 respectively). Similarly, gp41 in the progressors was significantly longer and had fewer PNGs compared to slow progressors (p = 0.02 and p = 0.02 respectively). Positive selection hotspots mapped mainly to V1, C3, V4, C4 and gp41 in slow progressors, whereas hotspots mapped mainly to gp41 in progressors. Signature consensus sequence differences between the groups occurred mainly in gp41.</p> <p>Conclusions</p> <p>These data suggest that separate regions of envelope are under differential selective forces, and that envelope evolution differs based on disease course. Differences between slow progressors and progressors may reflect differences in immunological pressure and immune evasion mechanisms. These data also indicate that the pattern of envelope evolution is an important correlate of disease progression in chronic HIV-1 subtype C infection.</p

    Exposed seronegative: Cellular immune responses to SARS-CoV-2 in the absence of seroconversion

    Get PDF
    The factors determining whether infection will occur following exposure to SARS-CoV-2 remain elusive. Certain SARS-CoV-2-exposed individuals mount a specific T-cell response but fail to seroconvert, representing a population that may provide further clarity on the nature of infection susceptibility and correlates of protection against SARS-CoV-2. Exposed seronegative individuals have been reported in patients exposed to the blood-borne pathogens Human Immunodeficiency virus and Hepatitis C virus and the sexually transmitted viruses Hepatitis B virus and Herpes Simplex virus. By comparing the quality of seronegative T-cell responses to SARS-CoV-2 with seronegative cellular immunity to these highly divergent viruses, common patterns emerge that offer insights on the role of cellular immunity against infection. For both SARS-CoV-2 and Hepatitis C, T-cell responses in exposed seronegatives are consistently higher than in unexposed individuals, but lower than in infected, seropositive patients. Durability of T-cell responses to Hepatitis C is dependent upon repeated exposure to antigen - single exposures do not generate long-lived memory T-cells. Finally, exposure to SARS-CoV-2 induces varying degrees of immune activation, suggesting that exposed seronegative individuals represent points on a spectrum rather than a discrete group. Together, these findings paint a complex landscape of the nature of infection but provide clues as to what may be protective early on in SARS-CoV-2 disease course. Further research on this phenomenon, particularly through cohort studies, is warranted

    Statistical Resolution of Ambiguous HLA Typing Data

    Get PDF
    High-resolution HLA typing plays a central role in many areas of immunology, such as in identifying immunogenetic risk factors for disease, in studying how the genomes of pathogens evolve in response to immune selection pressures, and also in vaccine design, where identification of HLA-restricted epitopes may be used to guide the selection of vaccine immunogens. Perhaps one of the most immediate applications is in direct medical decisions concerning the matching of stem cell transplant donors to unrelated recipients. However, high-resolution HLA typing is frequently unavailable due to its high cost or the inability to re-type historical data. In this paper, we introduce and evaluate a method for statistical, in silico refinement of ambiguous and/or low-resolution HLA data. Our method, which requires an independent, high-resolution training data set drawn from the same population as the data to be refined, uses linkage disequilibrium in HLA haplotypes as well as four-digit allele frequency data to probabilistically refine HLA typings. Central to our approach is the use of haplotype inference. We introduce new methodology to this area, improving upon the Expectation-Maximization (EM)-based approaches currently used within the HLA community. Our improvements are achieved by using a parsimonious parameterization for haplotype distributions and by smoothing the maximum likelihood (ML) solution. These improvements make it possible to scale the refinement to a larger number of alleles and loci in a more computationally efficient and stable manner. We also show how to augment our method in order to incorporate ethnicity information (as HLA allele distributions vary widely according to race/ethnicity as well as geographic area), and demonstrate the potential utility of this experimentally. A tool based on our approach is freely available for research purposes at http://microsoft.com/science
    corecore