26 research outputs found

    Neural G0:a quiescent-like state found in neuroepithelial-derived cells and glioma

    Get PDF
    Single‐cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA‐seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent‐like state in neuroepithelial‐derived cell types during mammalian neurogenesis and in gliomas. The Neural G0 markers are enriched with quiescent NSC genes and other neurodevelopmental markers found in non‐dividing neural progenitors. Putative glioblastoma stem‐like cells were significantly enriched in the Neural G0 cell population. Neural G0 cell populations and gene expression are significantly associated with less aggressive tumors and extended patient survival for gliomas. Genetic screens to identify modulators of Neural G0 revealed that knockout of genes associated with the Hippo/Yap and p53 pathways diminished Neural G0 in vitro, resulting in faster G1 transit, down‐regulation of quiescence‐associated markers, and loss of Neural G0 gene expression. Thus, Neural G0 represents a dynamic quiescent‐like state found in neuroepithelial‐derived cells and gliomas

    Cancer-Specific requirement for BUB1B/BUBR1 in human brain tumor isolates and genetically transformed cells

    Get PDF
    To identify new candidate therapeutic targets for Glioblastoma multiforme (GBM), we combined functional genetics and GBM network modeling to identify kinases required for the growth of patient-derived brain tumor initiating cells (BTICs), but which are dispensable to proliferating human neural stem cells (NSCs). This approach yielded BUB1B/BUBR1, a critical mitotic spindle checkpoint player, as the top scoring GBM-lethal kinase. Knockdown of BUB1B inhibited expansion of BTIC isolates, both in vitro and in vivo, without affecting proliferation of NSCs or astrocytes. Mechanistic studies revealed that BUB1B’s GLEBs domain activity is required to suppress lethal kinetochore-microtubule (KT-MT) attachment defects in GBM isolates and genetically transformed cells with altered sister KT dynamics, which likely favor KT-MT instability. These results indicate that GBM tumors have added requirement for BUB1B to suppress lethal consequences of altered KT function. They further suggest that sister KT measurements may predict cancer-specific sensitivity to BUB1B inhibition and perhaps other mitotic targets that affect KT-MT stability

    Genome-wide RNAi screens in human brain tumor isolates reveal a novel viability requirement for PHF5A

    Get PDF
    To identify key regulators of human brain tumor maintenance and initiation, we performed multiple genome-wide RNAi screens in patient-derived glioblastoma multiforme (GBM) stem cells (GSCs). These screens identified the plant homeodomain (PHD)-finger domain protein PHF5A as differentially required for GSC expansion, as compared with untransformed neural stem cells (NSCs) and fibroblasts. Given PHF5A's known involvement in facilitating interactions between the U2 snRNP complex and ATP-dependent helicases, we examined cancer-specific roles in RNA splicing. We found that in GSCs, but not untransformed controls, PHF5A facilitates recognition of exons with unusual C-rich 3â€Č splice sites in thousands of essential genes. PHF5A knockdown in GSCs, but not untransformed NSCs, astrocytes, or fibroblasts, inhibited splicing of these genes, leading to cell cycle arrest and loss of viability. Notably, pharmacologic inhibition of U2 snRNP activity phenocopied PHF5A knockdown in GSCs and also in NSCs or fibroblasts overexpressing MYC. Furthermore, PHF5A inhibition compromised GSC tumor formation in vivo and inhibited growth of established GBM patient-derived xenograft tumors. Our results demonstrate a novel viability requirement for PHF5A to maintain proper exon recognition in brain tumor-initiating cells and may provide new inroads for novel anti-GBM therapeutic strategies

    Evolutionary Divergence of Platelet-Derived Growth Factor Alpha Receptor Signaling Mechanisms

    No full text
    Receptor tyrosine kinases (RTKs) direct diverse cellular and developmental responses by stimulating a relatively small number of overlapping signaling pathways. Specificity may be determined by RTK expression patterns or by differential activation of individual signaling pathways. To address this issue we generated knock-in mice in which the extracellular domain of the mouse platelet-derived growth factor alpha receptor (PDGFαR) is fused to the cytosolic domain of Drosophila Torso (α(Tor)) or the mouse fibroblast growth factor receptor 1 (α(FR)). α(Tor) homozygous embryos exhibit significant rescue of neural crest and angiogenesis defects normally found in PDGFαR-null embryos yet fail to rescue skeletal or extraembryonic defects. This phenotype was associated with the ability of α(Tor) to stimulate the mitogen-activated protein (MAP) kinase pathway to near wild-type levels but failure to completely activate other pathways, such as phosphatidylinositol (PI) 3-kinase. The α(FR) chimeric receptor fails to rescue any aspect of the PDGFαR-null phenotype. Instead, α(FR) expression leads to a gain-of-function phenotype highlighted by ectopic bone development. The α(FR) phenotype was associated with a failure to limit MAP kinase signaling and to engage significant PI3-kinase response. These results suggest that precise regulation of divergent downstream signaling pathways is critical for specification of RTK function

    Identification and validation of PDGF transcriptional targets by microarray-coupled gene-trap mutagenesis - Supplemental Materials.

    No full text
    We developed a versatile, high-throughput genetic screening strategy by coupling gene mutagenesis and expression profiling technologies. Using a retroviral gene-trap vector optimized for efficient mutagenesis and cloning, we randomly disrupted genes in mouse embryonic stem (ES) cells and amplified them to construct a cDNA microarray. With this gene-trap array, we show that transcriptional target genes of platelet-derived growth factor (PDGF) can be efficiently and reliably identified in physiologically relevant cells and are immediately accessible to genetic studies to determine their in vivo roles and relative contributions to PDGF-regulated developmental processes. The same platform can be used to search for genes of specific biological relevance in a broad array of experimental settings, providing a fast track from gene identification to functional validation

    The effectiveness of behavioural interventions in the primary prevention of Hepatitis C amongst injecting drug users: a randomised controlled trial and lessons learned

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>To develop and evaluate the comparative effectiveness of behavioural interventions of enhanced prevention counselling (EPC) and simple educational counselling (SEC) in reducing hepatitis C viral (HCV) infection in sero-negative injecting drug users (IDU).</p> <p>Design</p> <p>Randomised controlled trial (RCT) of EPC intervention in comparison with simple educational counselling (SEC).</p> <p>Setting Specialised</p> <p>Drug services in London and Surrey, United Kingdom.</p> <p>Participants and Measurements</p> <p>Ninety five IDUs were recruited and randomised to receive EPC (n = 43) or SEC (n = 52). Subjects were assessed at baseline using the Addiction Severity Index (ASI), the Injecting Risk Questionnaire (IRQ), and Drug Injecting Confidence Questionnaire (DICQ). The primary outcome was measured by the rate of sero-conversion at 6 months and 12 months from baseline and by the ASI, IRQ and DICQ at 6 months from baseline. Hepatitis C testing was undertaken by the innovative test of the dried blood spot (DBS) test which increased the rate of testing by 4 fold compared to routine blood testing.</p> <p>Findings Seventy</p> <p>Eighty two subjects (82%) out of the 95 recruited were followed up at 6 months and 62 (65%) were followed up at 12 months. On the primary outcome measure of the rate of seroconversion, 8 out of 62 patients followed-up at twelve months seroconverted, three in the EPC group and five in the SEC group, indicating incidence rates of 9.1 per 100 person years for the EPC group, 17.2 per 100 person years for the SEC group, and 12.9 per 100 person years for the cohort as a whole. Analysis of the secondary outcome measures on alcohol use, risk behaviour, psychological measures, quality of life, showed no significant differences between the EPC and the SEC groups. However, there were significant changes on a number of measures from baseline values indicating positive change for both groups.</p> <p>Conclusion</p> <p>We were not able to prove the efficacy of EPC in comparison with SEC in the prevention of hepatitis C in IDUs. This was related to low recruitment and retention rates of the participants. Moreover there was a low adherence rate to EPC. The study provided the benefits of developing and introducing behavioural interventions of the EPC and SEC and the DBS screening for Hepatitis C. Moreover the main lessons learnt were that piloting of a new intervention is a crucial first step before conducting pragmatic RCTs of psychological interventions in the field of addiction; that an infrastructure and culture for psychosocial interventions is needed to enable applied research in the service environment, and research funding is needed for enabling the recruitment of dedicated trained therapists for the delivery of these interventions.</p
    corecore