5,681 research outputs found

    Strong-field general relativity and quasi-periodic oscillations in x-ray binaries

    Get PDF
    Quasi-periodic oscillations (QPOs) at frequencies near 1000 Hz were recently discovered in several x-ray binaries containing neutron stars. Two sources show no correlation between QPO frequency and source count rate (Berger et al. 1996, Zhang et al. 1996). We suggest that the QPO frequency is determined by the Keplerian orbital frequency near the marginally stable orbit predicted by general relativity in strong gravitational fields (Muchotrzeb-Czerny 1986, Paczynski 1987, Kluzniak et al. 1990). The QPO frequencies observed from 4U 1636-536 imply that the mass of the neutron star is 2.02 +/- 0.12 solar masses. Interpretation of the 4.1 keV absorption line observed from 4U 1636-536 (Waki et al. 1984) as due to Fe XXV ions then implies a neutron star radius of 9.6 +/-0.6 km.Comment: 4 pages, uses aas2pp4.sty, submitted to ApJ

    Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect

    Full text link
    We present a stochastic theory for the nonequilibrium dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle's worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.Comment: Invited talk given by BLH at the International Assembly on Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1 figur

    Density Functional Study of Cubic to Rhombohedral Transition in α\alpha-AlF3_3

    Full text link
    Under heating, α\alpha-AlF3_3 undergoes a structural phase transition from rhombohedral to cubic at temperature TT around 730 K. The density functional method is used to examine the TT=0 energy surface in the structural parameter space, and finds the minimum in good agreement with the observed rhombohedral structure. The energy surface and electronic wave-functions at the minimum are then used to calculate properties including density of states, Γ\Gamma-point phonon modes, and the dielectric function. The dipole formed at each fluorine ion in the low temperature phase is also calculated, and is used in a classical electrostatic picture to examine possible antiferroelectric aspects of this phase transition.Comment: A 6-page manuscript with 4 figures and 4 table

    Octahedral Tilt Instability of ReO_3-type Crystals

    Full text link
    The octahedron tilt transitions of ABX_3 perovskite-structure materials lead to an anti-polar (or antiferroelectric) arrangement of dipoles, with the low temperature structure having six sublattices polarized along various crystallographic directions. It is shown that an important mechanism driving the transition is long range dipole-dipole forces acting on both displacive and induced parts of the anion dipole. This acts in concert with short range repulsion, allowing a gain of electrostatic (Madelung) energy, both dipole-dipole and charge-charge, because the unit cell shrinks when the hard ionic spheres of the rigid octahedron tilt out of linear alignment.Comment: 4 page with 3 figures included; new version updates references and clarifies the argument

    Altered Prefrontal Theta and Gamma Activity during an Emotional Face Processing Task in Parkinson Disease.

    Get PDF
    Patients with Parkinson disease (PD) often experience nonmotor symptoms including cognitive deficits, depression, and anxiety. Cognitive and affective processes are thought to be mediated by prefrontal cortico-basal ganglia circuitry. However, the topography and neurophysiology of prefrontal cortical activity during complex tasks are not well characterized. We used high-resolution electrocorticography in pFC of patients with PD and essential tremor, during implantation of deep brain stimulator leads in the awake state, to understand disease-specific changes in prefrontal activity during an emotional face processing task. We found that patients with PD had less task-related theta-alpha power and greater task-related gamma power in the dorsolateral pFC, inferior frontal cortex, and lateral OFC. These findings support a model of prefrontal neurophysiological changes in the dopamine-depleted state, in which focal areas of hyperactivity in prefrontal cortical regions may compensate for impaired long-range interactions mediated by low-frequency rhythms. These distinct neurophysiological changes suggest that nonmotor circuits undergo characteristic changes in PD
    • …
    corecore