833 research outputs found

    Experimental Investigation of Oxide Leaching Methods for Li Isotopes

    Get PDF
    To examine the applicability of different leaching methods used to extract secondary oxides from silicate solids for lithium isotope (δ7Li) analysis, this study has conducted leaching experiments on five different types of silicate solids, including a fresh basalt, two weathered basalts, a Yellow River sediment (loess-dominated) and a shale. Four factors were assessed in the experiments: the concentration of the leaching reagent hydroxylamine hydrochloride (HH), the leaching temperature (20 °C versus 95 °C), the leaching time and the reagent/solid ratio. Based on elemental concentrations and Li isotopes, 0.04 mol l-1 hydroxylamine hydrochloride (HH) in 25% v/v acetic acid at room temperature for 1 hour with 40 ml g-1 reagent/solid ratio is recommended. At high temperature, low δ7Li and high magnesium/iron ratios indicate that minerals other than secondary oxides are dissolved. With increased leaching time, there is no evidence for Li isotopic fractionation at room temperature. However, longer leaching time or increased reagent/solid ratios may increase the risk of leaching from non-oxide phases. Meanwhile, results suggest that low concentrations of HH are not sufficient to target the secondary oxides evenly, while high concentrations of HH can leach out more non-oxides. We also examined the optimal oxide leaching method within a full sequential leaching procedure (i.e., exchangeable, carbonate, oxide, clay and residual phases). Elemental concentrations show that no elements exist exclusively in oxides, so it is essential to analyse multi-elemental concentrations to verify that the leaching has accessed this phase in a given sample. Comparing secondary oxides with their corresponding solutions, we estimate the isotopic fractionation (Δ7Lioxide-solution) is -16.8‰ to -27.7‰

    Temporal Evolution of Island Arc Magmatism and Its Influence on Long-Term Climate: Insights From the Izu Intra-Oceanic Arc

    Get PDF
    Continental arcs have an episodic magmatic activity over long-time periods, which is believed to modulate long-term climate. Island arcs have also the potential to release large amount of CO2 into the atmosphere, but whether they display an episodic magmatic history throughout their lifespan that contributes to the long-term (>10 Ma) climate changes remains an open question. To set additional constraints on the magmatic history of island arcs, here we examine fresh basalts and mineral-hosted melt inclusions from the Izu intra-oceanic arc, shortly after the eruption of boninites (∼45 Ma ago). Using chemical markers, we show that the long-term magmatic activity of the mature Izu arc has been relatively continuous over its lifespan, except during opening of the Shikoku back-arc Basin (∼23–20 Ma). Because slab dehydration and slab melting trigger decarbonation and carbonate dissolution of the subducted plate, we use slab-fluid markers (Ba/Th, Cs/Th, Cs/Ba, Rb/Th, Th/Nb) to examine the variations of slab-derived CO2 captured by the arc magmas. The long-term steadiness in the arc magmatic activity and in the slab-fluid contribution suggests that the CO2 outgassed during mature arc volcanism may have remained relatively homogeneous for the past 40 Ma in Izu. If worldwide mature island arcs also maintain a relatively steady-state magmatic activity over their lifespan, the long-term CO2 outgassed by these arc volcanoes may be rapidly balanced by chemical weathering and tectonic erosion, which rapidly draw down the atmospheric CO2 (within 200–300 kyr). This rapid negative feedback to long-term volcanic degassing permits to sustain a viable atmospheric CO2 for millions of years. The lack of co-variations between the markers of climate changes (δ13O, δ18C) and the long-term averages of the markers of slab fluids further implies that long-term volcanic degassing of CO2 from mature island arcs might play a minor role in the slide into icehouse climatic conditions. This long-term degassing stability may be, instead, a contributor to maintaining a broadly stable climate over long timescales

    Reconfiguration on sparse graphs

    Full text link
    A vertex-subset graph problem Q defines which subsets of the vertices of an input graph are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions S and T of size k, whether it is possible to transform S into T by a sequence of vertex additions and deletions such that each intermediate set is also a feasible solution of size bounded by k. We study reconfiguration variants of two classical vertex-subset problems, namely Independent Set and Dominating Set. We denote the former by ISR and the latter by DSR. Both ISR and DSR are PSPACE-complete on graphs of bounded bandwidth and W[1]-hard parameterized by k on general graphs. We show that ISR is fixed-parameter tractable parameterized by k when the input graph is of bounded degeneracy or nowhere-dense. As a corollary, we answer positively an open question concerning the parameterized complexity of the problem on graphs of bounded treewidth. Moreover, our techniques generalize recent results showing that ISR is fixed-parameter tractable on planar graphs and graphs of bounded degree. For DSR, we show the problem fixed-parameter tractable parameterized by k when the input graph does not contain large bicliques, a class of graphs which includes graphs of bounded degeneracy and nowhere-dense graphs

    Precision treatment of Singleton Merten syndrome with ruxolitinib: a case report.

    Get PDF
    BACKGROUND Singleton-Merten syndrome 1 (SGMRT1) is a rare type I interferonopathy caused by heterozygous mutations in the IFIH1 gene. IFIH1 encodes the pattern recognition receptor MDA5 which senses viral dsRNA and activates antiviral type I interferon (IFN) signaling. In SGMRT1, IFIH1 mutations confer a gain-of-function which causes overactivation of type I interferon (IFN) signaling leading to autoinflammation. CASE PRESENTATION We report the case of a nine year old child who initially presented with a slowly progressive decline of gross motor skill development and muscular weakness. At the age of five years, he developed osteoporosis, acro-osteolysis, alveolar bone loss and severe psoriasis. Whole exome sequencing revealed a pathogenic de novo IFIH1 mutation, confirming the diagnosis of SGMRT1. Consistent with constitutive type I interferon activation, patient blood cells exhibited a strong IFN signature as shown by marked up-regulation of IFN-stimulated genes. The patient was started on the Janus kinase (JAK) inhibitor, ruxolitinib, which inhibits signaling at the IFN-ι/β receptor. Within days of treatment, psoriatic skin lesions resolved completely and the IFN signature normalized. Therapeutic efficacy was sustained and over the course muscular weakness, osteopenia and growth also improved. CONCLUSIONS JAK inhibition represents a valuable therapeutic option for patients with SGMRT1. Our findings also highlight the potential of a patient-tailored therapeutic approach based on pathogenetic insight

    Enhanced clay formation key in sustaining the Middle Eocene Climatic Optimum

    Get PDF
    The Middle Eocene Climatic Optimum (around 40 million years ago) was a roughly 400,000-year-long global warming phase associated with an increase in atmospheric CO2 concentrations and deep-ocean acidifcation that interrupted the Eocene’s long-term cooling trend. The unusually long duration, compared with early Eocene global warming phases, is puzzling as temperature-dependent silicate weathering should have provided a negative feedback, drawing down CO2 over this timescale. Here we investigate silicate weathering during this climate warming event by measuring lithium isotope ratios (reported as δ7 Li), which are a tracer for silicate weathering processes, from a suite of open-ocean carbonate-rich sediments. We fnd a positive δ7 Li excursion—the only one identifed for a warming event so far —of ~3‰. Box model simulations support this signal to refect a global shift from congruent weathering, with secondary mineral dissolution, to incongruent weathering, with secondary mineral formation. We surmise that, before the climatic optimum, there was considerable soil shielding of the continents. An increase in continental volcanism initiated the warming event, but it was sustained by an increase in clay formation, which sequestered carbonate-forming cations, short-circuiting the carbonate–silicate cycle. Clay mineral dynamics may play an important role in the carbon cycle for climatic events occurring over intermediate (i.e., 100,000 year) timeframes

    Discussion of "Evidence-based health informatics:how do we know what we know?"

    Get PDF
    This article is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Evidence-based Health Informatics: How Do We Know What We Know?" written by Elske Ammenwerth [1]. It is introduced by an editorial. This article contains the combined commentaries invited to independently comment on the Ammenwerth paper. In subsequent issues the discussion can continue through letters to the editor. With these comments on the paper "Evidence-based Health Informatics: How do we know what we know?", written by Elske Ammenwerth [1], the journal seeks to stimulate a broad discussion on the challenges of evaluating information processing and information technology in health care. An international group of experts has been invited by the editor of Methods to comment on this paper. Each of the invited commentaries forms one section of this paper.11 page(s

    Behaviour of Sr, Ca, and Mg isotopes under variable hydrological conditions in high-relief large river systems

    Get PDF
    To assess how chemical weathering processes in large high-relief river systems respond to climatic variability, we studied seasonal changes in radiogenic strontium (87Sr/86Sr) and stable calcium (δ44/40Ca) and magnesium (δ26Mg) isotopes in the Jinsha and Yalong rivers, which drain the southeastern Tibetan Plateau. During the low-runoff season, with discharge (Q) 4000 m3/s), storms generate rapid overland flow, which transfers large volumes of soil into the rivers, such that soil weathering plays an important role in regulating riverine chemical compositions. At these times, the riverine Ca and Sr isotope evolution is influenced by secondary mineral dissolution and sediment–water cation exchange. Overall, this study highlights the potential of combining multiple isotope systems (Sr, Ca, Mg) to trace the dynamics of water–rock interaction under variable hydrological conditions

    Maternal Perception of Reduced Fetal Movements Is Associated with Altered Placental Structure and Function

    Get PDF
    Maternal perception of reduced fetal movement (RFM) is associated with increased risk of stillbirth and fetal growth restriction (FGR). DFM is thought to represent fetal compensation to conserve energy due to insufficient oxygen and nutrient transfer resulting from placental insufficiency. To date there have been no studies of placental structure in cases of DFM.To determine whether maternal perception of reduced fetal movements (RFM) is associated with abnormalities in placental structure and function.Placentas were collected from women with RFM after 28 weeks gestation if delivery occurred within 1 week. Women with normal movements served as a control group. Placentas were weighed and photographs taken. Microscopic structure was evaluated by immunohistochemical staining and image analysis. System A amino acid transporter activity was measured as a marker of placental function. Placentas from all pregnancies with RFM (irrespective of outcome) had greater area with signs of infarction (3.5% vs. 0.6%; p<0.01), a higher density of syncytial knots (p<0.001) and greater proliferation index (p<0.01). Villous vascularity (p<0.001), trophoblast area (p<0.01) and system A activity (p<0.01) were decreased in placentas from RFM compared to controls irrespective of outcome of pregnancy.This study provides evidence of abnormal placental morphology and function in women with RFM and supports the proposition of a causal association between placental insufficiency and RFM. This suggests that women presenting with RFM require further investigation to identify those with placental insufficiency

    Enhanced Continental Weathering as a Trigger for the End‐Devonian Hangenberg Crisis

    Get PDF
    The Hangenberg Crisis coincided with a large decline of biodiversity and widespread anoxia in the end-Devonian ocean. Previous research attributed marine anoxia to the spread of deeply-rooted plants and/or increased volcanism on the continents, but crucial links have not been thoroughly explored. Herein, we propose enhanced weathering as a key trigger, as evidenced by a negative shift (∼8‰) in lithium isotopes and a coupled response in carbon isotopes of marine carbonates in South China. Our findings imply that rapid weathering of crustal rocks increased nutrient delivery to the ocean, as indicated by an increase in the carbonate-associated phosphate levels, contributing to oceanic eutrophication. In the absence of massive volcanic emissions and intense orogeny, the cause of enhanced continental weathering was likely the expansion of the terrestrial rhizosphere, highlighting the potential for land plant evolution to initiate weathering changes of sufficient severity to trigger a major bio/environmental crisis in the Earth system
    • …
    corecore