4 research outputs found

    Genome-Wide Analysis of Copy Number Variation in Type 1 Diabetes

    Get PDF
    Type 1 diabetes (T1D) tends to cluster in families, suggesting there may be a genetic component predisposing to disease. However, a recent large-scale genome-wide association study concluded that identified genetic factors, single nucleotide polymorphisms, do not account for overall familiality. Another class of genetic variation is the amplification or deletion of >1 kilobase segments of the genome, also termed copy number variations (CNVs). We performed genome-wide CNV analysis on a cohort of 20 unrelated adults with T1D and a control (Ctrl) cohort of 20 subjects using the Affymetrix SNP Array 6.0 in combination with the Birdsuite copy number calling software. We identified 39 CNVs as enriched or depleted in T1D versus Ctrl. Additionally, we performed CNV analysis in a group of 10 monozygotic twin pairs discordant for T1D. Eleven of these 39 CNVs were also respectively enriched or depleted in the Twin cohort, suggesting that these variants may be involved in the development of islet autoimmunity, as the presently unaffected twin is at high risk for developing islet autoimmunity and T1D in his or her lifetime. These CNVs include a deletion on chromosome 6p21, near an HLA-DQ allele. CNVs were found that were both enriched or depleted in patients with or at high risk for developing T1D. These regions may represent genetic variants contributing to development of islet autoimmunity in T1D

    Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease

    Get PDF
    Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in European EoE cases and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replication of the 5q22 locus (meta-analysis p = 1.9×10−16), we identified association at 2p23 (encoding CAPN14, p = 2.5×10−10). CAPN14 was specifically expressed in the esophagus, dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to IL-13, and located in an epigenetic hotspot modified by IL-13. There was enriched esophageal expression for the genes neighboring the top 208 EoE sequence variants. Multiple allergic sensitization loci were associated with EoE susceptibility (4.8×10−2 < p < 5.1×10−11). We propose a model that elucidates the tissue specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13–inducible esophageal response involving CAPN14

    Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease

    No full text
    Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder associated with allergic hypersensitivity to food. We interrogated >1.5 million genetic variants in European EoE cases and subsequently in a multi-site cohort with local and out-of-study control subjects. In addition to replication of the 5q22 locus (meta-analysis p = 1.9×10(−16)), we identified association at 2p23 (encoding CAPN14, p = 2.5×10(−10)). CAPN14 was specifically expressed in the esophagus, dynamically upregulated as a function of disease activity and genetic haplotype and after exposure of epithelial cells to IL-13, and located in an epigenetic hotspot modified by IL-13. There was enriched esophageal expression for the genes neighboring the top 208 EoE sequence variants. Multiple allergic sensitization loci were associated with EoE susceptibility (4.8×10(−2) < p < 5.1×10(−11)). We propose a model that elucidates the tissue specific nature of EoE that involves the interplay of allergic sensitization with an EoE-specific, IL-13–inducible esophageal response involving CAPN14
    corecore