5 research outputs found

    Frameless Stereotactic Robot-Assisted Subthalamic Nucleus Deep Brain Stimulation: Case Report.

    No full text
    BackgroundElectrode implantation for deep brain stimulation (DBS) can be performed in numerous ways, but the current "gold standard" is the use of frame-based systems for accuracy. Robotic stereotactic procedures, however, have gained increased interest because of their ease of use and reliability, but there could be concern about their safety in the United States as the result of recent lawsuits (e.g., the da Vinci Surgical System). We report the first DBS implantation performed using a robot (ROSA robotic device) approved by Food and Drug Administration for use in North America.Case descriptionA 56-year-old, right-handed woman with a 12-year history of Parkinson disease is described. She was offered bilateral subthalamic nucleus DBS placement to address motor fluctuations and dyskinesias. DBS electrode implantation was implemented successfully with ROSA robotic stereotactic assistance. Using preoperative magnetic resonance imaging scan acquisitions, we targeted the patient's subthalamic nucleus bilaterally. Bone fiducials were placed and intraoperative computed tomography (CT) imaging was obtained. The magnetic resonance imaging and CT were fused, and the patient was registered to the ROSA software. Trajectories were obtained and a microdrive device was fixed to the robotic arm to advance the electrode to the correct location. Electrodes were then placed bilaterally. Intraoperative CT showed good placement with no complications encountered.ConclusionsThe advantages of robotic assistance in stereotactic procedures are as follows: 1) improved accuracy, 2) "arc-less" approach, and 3) minor adjustments can be made in multiple planes to the entry point without adjustment of a frame. The case demonstrates robotic stereotactic assistance viability as an alternative to traditional frame-based or frameless systems in U.S. hospitals

    Effect of Ezogabine on Cortical and Spinal Motor Neuron Excitability in Amyotrophic Lateral Sclerosis: A Randomized Clinical Trial

    No full text
    © 2021 American Medical Association. All rights reserved. Importance: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor nervous system. Clinical studies have demonstrated cortical and spinal motor neuron hyperexcitability using transcranial magnetic stimulation and threshold tracking nerve conduction studies, respectively, although metrics of excitability have not been used as pharmacodynamic biomarkers in multi-site clinical trials. Objective: To ascertain whether ezogabine decreases cortical and spinal motor neuron excitability in ALS. Design, Setting, and Participants: This double-blind, placebo-controlled phase 2 randomized clinical trial sought consent from eligible participants from November 3, 2015, to November 9, 2017, and was conducted at 12 US sites within the Northeast ALS Consortium. Participants were randomized in equal numbers to a higher or lower dose of ezogabine or to an identical matched placebo, and they completed in-person visits at screening, baseline, week 6, and week 8 for clinical assessment and neurophysiological measurements. Interventions: Participants were randomized to receive 600 mg/d or 900 mg/d of ezogabine or a matched placebo for 10 weeks. Main Outcomes and Measures: The primary outcome was change in short-interval intracortical inhibition (SICI; SICI-1was used in analysis to reflect stronger inhibition from an increase in amplitude) from pretreatment mean at screening and baseline to the full-dose treatment mean at weeks 6 and 8. The secondary outcomes included levels of cortical motor neuron excitability (including resting motor threshold) measured by transcranial magnetic stimulation and spinal motor neuron excitability (including strength-duration time constant) measured by threshold tracking nerve conduction studies. Results: A total of 65 participants were randomized to placebo (23), 600 mg/d of ezogabine (23), and 900 mg/d of ezogabine (19 participants); 45 were men (69.2%) and the mean (SD) age was 58.3 (8.8) years. The SICI-1increased by 53% (mean ratio, 1.53; 95% CI, 1.12-2.09; P =.009) in the 900-mg/d ezogabine group vs placebo group. The SICI-1did not change in the 600-mg/d ezogabine group vs placebo group (mean ratio, 1.15; 95% CI, 0.87-1.52; P =.31). The resting motor threshold increased in the 600-mg/d ezogabine group vs placebo group (mean ratio, 4.61; 95% CI, 0.21-9.01; P =.04) but not in the 900-mg/d ezogabine group vs placebo group (mean ratio, 1.95; 95% CI, -2.64 to 6.54; P =.40). Ezogabine caused a dose-dependent decrease in excitability by several other metrics, including strength-duration time constant in the 900-mg/d ezogabine group vs placebo group (mean ratio, 0.73; 95% CI, 0.60 to 0.87; P \u3c.001). Conclusions and Relevance: Ezogabine decreased cortical and spinal motor neuron excitability in participants with ALS, suggesting that such neurophysiological metrics may be used as pharmacodynamic biomarkers in multisite clinical trials. Trial Registration: ClinicalTrials.gov Identifier: NCT02450552
    corecore