6,397 research outputs found
Research in electrically supported vacuum gyroscope. Volume 1 - Summary Final report
Intent, results, and recommendations of research program for Electrically Supported Vacuum Gyroscope /ESVG
Analysis of a cyclotron maser instability with application to space and laboratory plasmas
When a beam of electrons moves into an increasing magnetic field, conservation of the magnetic moment results in the formation of a crescent, or horseshoe shaped velocity distribution. The resultant horseshoe shaped velocity distribution has been shown to be unstable with respect to a cyclotron-maser type instability. This instability has been postulated as the mechanism responsible for auroral kilometric radiation and also non-thermal radiation from other astrophysical bodies. In this paper the previous theory, that assumed an infinite uniform plasma, is extended to apply to a bounded cylindrical geometry. This more exact theory in bounded cylindrical geometry is also directly relevant to a laboratory experiment currently being carried out
Laser phase noise effects on the dynamics of optomechanical resonators
We investigate theoretically the influence of laser phase noise on the
cooling and heating of a generic cavity optomechanical system. We derive the
back-action damping and heating rates and the mechanical frequency shift of the
radiation pressure-driven oscillating mirror, and derive the minimum phonon
occupation number for small laser linewidths. We find that in practice laser
phase noise does not pose serious limitations to ground state cooling. We then
consider the effects of laser phase noise in a parametric cavity driving scheme
that minimizes the back-action heating of one of the quadratures of the
mechanical oscillator motion. Laser linewidths narrow compared to the decay
rate of the cavity field will not pose any problems in an experimental setting,
but broader linewidths limit the practicality of this back-action evasion
method.Comment: 9 pages, 7 figure
A dangerous precedent indeed - a response to CR Snyman's note on Masiya
Masiya v Director of Public Prosecutions 2007 (5) SA 30 (CC) (hereafter Masiya) is inherently controversial. The facts of the case, the unlawful anal penetration of a 9-year-old girl, strike at the heart of our social fabric. The legal issues at stake, such as the principle of legality, the separation of powers and the Constitution, strike at the heart of our legal order. It is thus unsurprising that the judgment in Masiya has elicited critical commentary. This is a direct response to one such comment, C R Snyman's recent note 'Extending the scope of rape - A dangerous precedent' (2007) 124 SALJ 677 (hereafter 'Snyman'). Snyman addresses the following four issues in his note as they pertain to the judgment in Masiya : the principle of legality; separation of powers; the constitutionality of the common-law definition of rape; and whether the court was unduly swayed by emotional considerations. This comment refutes his stance and the reasoning employed in relation to each of these issues
Viscoelastic response of fibroblasts to tension transmitted through adherens junctions
Cytoplasmic deformation was monitored by observing the displacements of 200-nm green fluorescent beads microinjected into the cytoplasm of Swiss 3T3 fibroblasts. We noted a novel protrusion of nonruffling cell margins that was accompanied by axial flow of beads and cytoplasmic vesicles as far as 50 microm behind the protruding plasma membrane. Fluorescent analog cytochemistry and immunofluorescence localization of F-actin, alpha-actinin, N-cadherin, and beta-catenin showed that the protruding margins of deforming cells were mechanically coupled to neighboring cells by adherens junctions. Observations suggested that protrusion resulted from passive linear deformation in response to tensile stress exerted by centripetal contraction of the neighboring cell. The time dependence of cytoplasmic strain calculated from the displacements of beads and vesicles was fit quantitatively by a Kelvin-Voight model for a viscoelastic solid with a mean limiting strain of 0.58 and a mean strain rate of 4.3 x 10(-3) s(-1). In rare instances, the deforming cell and its neighbor spontaneously became uncoupled, and recoil of the protruding margin was observed. The time dependence of strain during recoil also fit a Kelvin-Voight model with similar parameters, suggesting that the kinetics of deformation primarily reflect the mechanical properties of the deformed cell rather than the contractile properties of its neighbor. The existence of mechanical coupling between adjacent fibroblasts through adherens junctions and the viscoelastic responses of cells to tension transmitted directly from cell to cell are factors that must be taken into account to fully understand the role of fibroblasts in such biological processes as wound closure and extracellular matrix remodeling during tissue development
Tunable Transient Decay Times in Nonlinear Systems: Application to Magnetic Precession
The dynamical motion of the magnetization plays a key role in the properties
of magnetic materials. If the magnetization is initially away from the
equilibrium direction in a magnetic nanoparticle, it will precess at a natural
frequency and, with some damping present, will decay to the equilibrium
position in a short lifetime. Here we investigate a simple but important
situation where a magnetic nanoparticle is driven non-resonantly by an
oscillating magnetic field, not at the natural frequency. We find a surprising
result that the lifetime of the transient motion is strongly tunable, by
factors of over 10,000, by varying the amplitude of the driving field.Comment: EPL Preprin
Wave propagation and tunneling through periodic structures
The phenomenon of tunneling manifests itself in nearly every field of physics. The ability to distinguish a wave tunneling through a barrier from one propagating is important for a number of applications. Here we explore the properties of the wave traveling through the band gap created by a lattice, either as a consequence of tunneling through the barrier or due to the presence of a pass band inside the gap. To observe the pass band for studying tunneling and propagating waves simultaneously, a localized lattice defect was introduced. The differences between the two phenomena are highlighted via waves' dispersion characteristics
Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide
A gyrotron backward wave oscillator (gyro-BWO) with a helically corrugated interaction waveguide demonstrated its potential as a powerful microwave source with high efficiency and a wide frequency tuning range. This letter presents the theory describing the dispersion properties of such a waveguide and the linear beam-wave interaction. Numerical simulation results using the PIC code MAGIC were found to be in excellent agreement with the output measured from a gyro-BWO experiment
In vivo imaging of pyrrole-imidazole polyamides with positron emission tomography
The biodistribution profiles in mice of two pyrrole-imidazole polyamides were determined by PET. Pyrrole-imidazole polyamides are a class of small molecules that can be programmed to bind a broad repertoire of DNA sequences, disrupt transcription factor-DNA interfaces, and modulate gene expression pathways in cell culture experiments. The 18F-radiolabeled polyamides were prepared by oxime ligation between 4-[18F]-fluorobenzaldehyde and a hydroxylamine moiety at the polyamide C terminus. Small animal PET imaging of radiolabeled polyamides administered to mice revealed distinct differences in the biodistribution of a 5-ring Ī²-linked polyamide versus an 8-ring hairpin, which exhibited better overall bioavailability. In vivo imaging of pyrrole-imidazole polyamides by PET is a minimum first step toward the translation of polyamide-based gene regulation from cell culture to small animal studies
- ā¦