3 research outputs found

    A seventh order numerical method for singular perturbed differential-difference equations with negative shift

    Get PDF
    In this paper, a seventh order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been used for delay. Such problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, we first use Taylor approximation to tackle terms containing small shifts which converts into a singularly perturbed boundary value problem. This two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a seventh order compact difference scheme is employed for the first order system and solved by using the boundary conditions. Several numerical examples are solved and compared with exact solution. We also present least square errors, maximum errors and observed that the present method approximates the exact solution very well

    Computational approach to solving a layered behaviour differential equation with large delay using quadrature scheme

    No full text
    This paper deals with the computational approach to solving the singularly perturbed differential equation with a large delay in the differentiated term using the two-point Gaussian quadrature. If the delay is bigger than the perturbed parameter, the layer behaviour of the solution is destroyed, and the solution becomes oscillatory. With the help of a special type mesh, a numerical scheme consisting of a fitting parameter is developed to minimize the error and to control the layer structure in the solution. The scheme is studied for convergence. Compared with other methods in the literature, the maximum defects in the approach are tabularized to validate the competency of the numerical approach. In the suggested technique, we additionally focused on the effect of a large delay on the layer structure or oscillatory behaviour of the solutions using a special form of mesh with and without a fitting parameter. The effect of the fitting parameter is demonstrated in graphs to show its impact on the layer of the solution

    Difference scheme for differential-difference problems with small shifts arising in computational model of neuronal variability

    No full text
    The solution of differential-difference equations with small shifts having layer behaviour is the subject of this study. A difference scheme is proposed to solve this equation using a non-uniform grid. With the non-uniform grid, finite - difference estimates are derived for the first and second-order derivatives. Using these approximations, the given equation is discretized. The discretized equation is solved using the tridiagonal system algorithm. Convergence of the scheme is examined. Various numerical simulations are presented to demonstrate the validity of the scheme. In contrast to other techniques, maximum errors in the solution are organized to support the method. The layer behaviour in the solutions of the examples is depicted in graphs
    corecore