4,453 research outputs found

    On small energy stabilization in the NLKG with a trapping potential

    Full text link
    We consider a nonlinear Klein Gordon equation (NLKG) with short range potential with eigenvalues and show that in the contest of complex valued solutions the small standing waves are attractors for small solutions of the NLKG. This extends the results already known for the nonlinear Schr\"odinger equation and for the nonlinear Dirac equation. In addition, this extends a result of Bambusi and Cuccagna (which in turn was an extension of a result by Soffer and Weinstein) which considered only real valued solutions of the NLKG

    Doping change and distortion effect on double-exchange ferromagnetism

    Full text link
    Doping change and distortion effect on the double-exchange ferromagnetism are studied within a simplified double-exchange model. The presence of distortion is modelled by introducing the Falicov-Kimball interaction between itinerant electrons and classical variables. By employing the dynamical mean-field theory the charge and spin susceptibility are exactly calculated. It is found that there is a competition between the double-exchange induced ferromagnetism and disorder-order transition. At low temperature various long-range order phases such as charge ordered and segregated phases coexist with ferromagnetism depending on doping and distortion. A rich phase diagram is obtained.Comment: 8 pages, 8 figure

    Linear response within the projection-based renormalization method: Many-body corrections beyond the random phase approximation

    Full text link
    The explicit evaluation of linear response coefficients for interacting many-particle systems still poses a considerable challenge to theoreticians. In this work we use a novel many-particle renormalization technique, the so-called projector-based renormalization method, to show how such coefficients can systematically be evaluated. To demonstrate the prospects and power of our approach we consider the dynamical wave-vector dependent spin susceptibility of the two-dimensional Hubbard model and also determine the subsequent magnetic phase diagram close to half-filling. We show that the superior treatment of (Coulomb) correlation and fluctuation effects within the projector-based renormalization method significantly improves the standard random phase approximation results.Comment: 17 pages, 7 figures, revised versio

    Temperature dependent graphene suspension due to thermal Casimir interaction

    Full text link
    Thermal effects contributing to the Casimir interaction between objects are usually small at room temperature and they are difficult to separate from quantum mechanical contributions at higher temperatures. We propose that the thermal Casimir force effect can be observed for a graphene flake suspended in a fluid between substrates at the room temperature regime. The properly chosen materials for the substrates and fluid induce a Casimir repulsion. The balance with the other forces, such as gravity and buoyancy, results in a stable temperature dependent equilibrium separation. The suspended graphene is a promising system due to its potential for observing thermal Casimir effects at room temperature.Comment: 5 pages, 4 figures, in APL production 201
    corecore