11,444 research outputs found

    Scalar one-loop four-point Feynman integrals with complex internal masses

    Full text link
    Based on the method in Refs.~{\tt [D.~Kreimer, Z.\ Phys.\ C {\bf 54} (1992) 667} and {\tt Int.\ J.\ Mod.\ Phys.\ A {\bf 8} (1993) 1797]}, we present analytic results for scalar one-loop four-point Feynman integrals with complex internal masses. The results are not only valid for complex internal masses, but also for real internal mass cases. Different from the traditional approach proposed by G. 't Hooft and M. Veltman in the paper {\tt[Nucl.\ Phys.\ B {\bf 153} (1979) 365]}, this method can be extended to evaluate tensor integrals directly. Therefore, it may open a new approach to cure the inverse Gram determinant problem analytically. We then implement the results into a computer package which is {\tt ONELOOP4PT.CPP}. In numerical checks, one compares the program to {\tt LoopTools version} 2.122.12 in both real and complex mass cases. We find a perfect agreement between the results generated from this work and {\tt LoopTools}

    Precoder design for space-time coded systems over correlated Rayleigh fading channels using convex optimization

    Get PDF
    A class of computationally efficient linear precoders for space-time block coded multiple-input multiple-output wireless systems is derived based on the minimization of the exact symbol error rate (SER) and its upper bound. Both correlations at the transmitter and receiver are assumed to be present, and only statistical channel state information in the form of the transmit and receive correlation matrices is assumed to be available at the transmitter. The convexity of the design based on SER minimization is established and exploited. The advantage of the developed technique is its low complexity. We also find various relationships of the proposed designs to the existing precoding techniques, and derive very simple closed-form precoders for special cases such as two or three receive antennas and constant receive correlation. The numerical simulations illustrate the excellent SER performance of the proposed precoders

    The shear-driven Rayleigh problem for generalised Newtonian fluids

    Get PDF
    We consider a variant of the classical ‘Rayleigh problem’ (‘Stokes’s first problem’) in which a semi-infinite region of initially quiescent fluid is mobilised by a shear stress applied suddenly to its boundary. We show that self-similar solutions for the fluid velocity are available for any generalised Newtonian fluid, regardless of its constitutive law. We demonstrate how these solutions may be used to provide insight into some generic questions about the behaviour of unsteady, non-Newtonian boundary layers, and in particular the effect of shear thinning or thickening on the thickness of a boundary layer

    Measurement of Optical Attenuation in Acrylic Light Guides for a Dark Matter Detector

    Full text link
    Acrylic is a common material used in dark matter and neutrino detectors for light guides, transparent vessels, and neutron shielding, creating an intermediate medium between the target volume and photodetectors. Acrylic has low absorption within the visible spectrum and has a high capture cross section for neutrons. The natural radioactivity in photodetectors is a major source of background neutrons for low background detectors making the use of acrylic attractive for shielding and background reduction. To test the optical properties of acrylic we measured the transmittance and attenuation length of fourteen samples of acrylic from four different manufacturers. Samples were evaluated at five different wavelengths between 375 nm and 632 nm. We found that all samples had excellent transmittance at wavelengths greater than 550 nm. Transmittance was found to decrease below 550 nm. As expected, UV-absorbing samples showed a sharp decrease in transmittance below 425 nm compared to UV-transmitting samples. We report attenuation lengths for the three shortest wavelengths for comparison and discuss how the acrylic was evaluated for use in the MiniCLEAN single-phase dark matter detector.Comment: Accepted by JINST, version 2 with edits from reviewer comment

    Utilitarian placement of composite services

    Get PDF
    The emergence of distributed clouds opens up new research challenges for service deployment. Composite services consist of multiple components, potentially located in different geographical locations, which need to be interconnected and invoked in the correct order according to the overall service work-flow. The placement of composite services over distributed cloud node locations raises new challenges for efficient deployment and management. In this paper, we design exact models of the composite service placement problems using Mixed Integer Linear Program (MILP), and compare these to solutions based on genetic algorithms. We use a utility function, based initially on latency metrics, to evaluate the quality of service (QoS) of the deployed composite service. By maximizing the utility with respect to deployment cost, our approach can provide good QoS for users while satisfying budget constraints for service providers. Based on simulations using real data-center locations and traffic demand patterns, we show that our algorithms are scalable under a range of scenarios.This work has been supported in part by the FP7 FUSION (grant agreement 318205), in part by the U.S. Army Research Laboratory and the U.K. Ministry of Defence (agreement number W911NF-16-3-0001), in part by the H2020 5G-MEDIA (grant agreement 761699) and in part by the CHIST-ERA CONCERT (grant agreement I1402) projects.info:eu-repo/semantics/publishedVersio

    Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on FeSe superconductor (Tc ~ 8 K), which exhibits a tetragonal-to-orthorhombic structural transition at Ts ~ 90 K. At low temperature we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T ~ 110 K, slightly above Ts, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.Comment: 5 pages, 3 figure
    corecore