5,286 research outputs found

    Low-Complexity Iterative Detection for Orthogonal Time Frequency Space Modulation

    Full text link
    We elaborate on the recently proposed orthogonal time frequency space (OTFS) modulation technique, which provides significant advantages over orthogonal frequency division multiplexing (OFDM) in Doppler channels. We first derive the input--output relation describing OTFS modulation and demodulation (mod/demod) for delay--Doppler channels with arbitrary number of paths, with given delay and Doppler values. We then propose a low-complexity message passing (MP) detection algorithm, which is suitable for large-scale OTFS taking advantage of the inherent channel sparsity. Since the fractional Doppler paths (i.e., not exactly aligned with the Doppler taps) produce the inter Doppler interference (IDI), we adapt the MP detection algorithm to compensate for the effect of IDI in order to further improve performance. Simulations results illustrate the superior performance gains of OTFS over OFDM under various channel conditions.Comment: 6 pages, 7 figure

    Importance Sketching of Influence Dynamics in Billion-scale Networks

    Full text link
    The blooming availability of traces for social, biological, and communication networks opens up unprecedented opportunities in analyzing diffusion processes in networks. However, the sheer sizes of the nowadays networks raise serious challenges in computational efficiency and scalability. In this paper, we propose a new hyper-graph sketching framework for inflence dynamics in networks. The central of our sketching framework, called SKIS, is an efficient importance sampling algorithm that returns only non-singular reverse cascades in the network. Comparing to previously developed sketches like RIS and SKIM, our sketch significantly enhances estimation quality while substantially reducing processing time and memory-footprint. Further, we present general strategies of using SKIS to enhance existing algorithms for influence estimation and influence maximization which are motivated by practical applications like viral marketing. Using SKIS, we design high-quality influence oracle for seed sets with average estimation error up to 10x times smaller than those using RIS and 6x times smaller than SKIM. In addition, our influence maximization using SKIS substantially improves the quality of solutions for greedy algorithms. It achieves up to 10x times speed-up and 4x memory reduction for the fastest RIS-based DSSA algorithm, while maintaining the same theoretical guarantees.Comment: 12 pages, to appear in ICDM 2017 as a regular pape

    On the 3-D structure and dissipation of reconnection-driven flow-bursts

    Get PDF
    The structure of magnetic reconnection-driven outflows and their dissipation are explored with large-scale, 3-D particle-in-cell (PIC) simulations. Outflow jets resulting from 3-D reconnection with a finite length x-line form fronts as they propagate into the downstream medium. A large pressure increase ahead of this ``reconnection jet front'' (RJF), due to reflected and transmitted ions, slows the front so that its velocity is well below the velocity of the ambient ions in the core of the jet. As a result, the RJF slows and diverts the high-speed flow into the direction perpendicular to the reconnection plane. The consequence is that the RJF acts as a thermalization site for the ion bulk flow and contributes significantly to the dissipation of magnetic energy during reconnection even though the outflow jet is subsonic. This behavior has no counterpart in 2-D reconnection. A simple analytic model predicts the front velocity and the fraction of the ion bulk flow energy that is dissipated

    Discovery of Radio Emission from the Tight M8 Binary: LP 349-25

    Get PDF
    We present radio observations of 8 ultracool dwarfs with a narrow spectral type range (M8-M9.5) using the Very Large Array at 8.5 GHz. Only the tight M8 binary LP 349-25 was detected. LP 349-25 is the tenth ultracool dwarf system detected in radio and its trigonometric parallax pi = 67.6 mas, recently measured by Gatewood et al., makes it the furthest ultracool system detected by the Very Large Array to date, and the most radio-luminous outside of obvious flaring activity or variability. With a separation of only 1.8 AU, masses of the components of LP 349-25 can be measured precisely without any theoretical assumptions (Forveille et al.), allowing us to clarify their fully-convective status and hence the kind of magnetic dynamo in these components which may play an important role to explain our detection of radio emission from these objects. This also makes LP 349-25 an excellent target for further studies with better constraints on the correlations between X-ray, radio emission and stellar parameters such as mass, age, temperature, and luminosity in ultracool dwarfs.Comment: accepted by ApJ, referee's comments included, typo in equation 1 correcte

    SMA observations of the proto brown dwarf candidate SSTB213 J041757

    Full text link
    Context. The previously identified source SSTB213 J041757 is a proto brown dwarf candidate in Taurus, which has two possible components A and B. It was found that component B is probably a class 0/I proto brown dwarf associated with an extended envelope. Aims. Studying molecular outflows from young brown dwarfs provides important insight into brown dwarf formation mechanisms, particularly brown dwarfs at the earliest stages such as class 0, I. We therefore conducted a search for molecular outflows from SSTB213 J041757. Methods. We observed SSTB213 J041757 with the Submillimeter Array to search for CO molecular outflow emission from the source. Results. Our CO maps do not show any outflow emission from the proto brown dwarf candidate. Conclusions. The non-detection implies that the molecular outflows from the source are weak; deeper observations are therefore needed to probe the outflows from the source.Comment: 7 pages, 4 figures, accepted for publication in A&

    On the Cause of Supra-Arcade Downflows in Solar Flares

    Get PDF
    A model of supra-arcade downflows (SADs), dark low density regions also known as tadpoles that propagate sunward during solar flares, is presented. It is argued that the regions of low density are flow channels carved by sunward-directed outflow jets from reconnection. The solar corona is stratified, so the flare site is populated by a lower density plasma than that in the underlying arcade. As the jets penetrate the arcade, they carve out regions of depleted plasma density which appear as SADs. The present interpretation differs from previous models in that reconnection is localized in space but not in time. Reconnection is continuous in time to explain why SADs are not filled in from behind as they would if they were caused by isolated descending flux tubes or the wakes behind them due to temporally bursty reconnection. Reconnection is localized in space because outflow jets in standard two-dimensional reconnection models expand in the normal (inflow) direction with distance from the reconnection site, which would not produce thin SADs as seen in observations. On the contrary, outflow jets in spatially localized three-dimensional reconnection with an out-of-plane (guide) magnetic field expand primarily in the out-of-plane direction and remain collimated in the normal direction, which is consistent with observed SADs being thin. Two-dimensional proof-of-principle simulations of reconnection with an out-of-plane (guide) magnetic field confirm the creation of SAD-like depletion regions and the necessity of density stratification. Three-dimensional simulations confirm that localized reconnection remains collimated.Comment: 16 pages, 5 figures, accepted to Astrophysical Journal Letters in August, 2013. This version is the accepted versio

    Super-Alfv\'enic propagation of reconnection signatures and Poynting flux during substorms

    Full text link
    The propagation of reconnection signatures and their associated energy are examined using kinetic particle-in-cell simulations and Cluster satellite observations. It is found that the quadrupolar out-of-plane magnetic field near the separatrices is associated with a kinetic Alfv\'en wave. For magnetotail parameters, the parallel propagation of this wave is super-Alfv\'enic (V_parallel ~ 1500 - 5500 km/s) and generates substantial Poynting flux (S ~ 10^-5 - 10^-4 W/m^2) consistent with Cluster observations of magnetic reconnection. This Poynting flux substantially exceeds that due to frozen-in ion bulk outflows and is sufficient to generate white light aurora in the Earth's ionosphere.Comment: Submitted to PRL on 11/1/2010. Resubmitted on 4/5/201

    Detection of lithium in nearby young late-M dwarfs

    Full text link
    Late M-type dwarfs in the solar neighborhood include a mixture of very low-mass stars and brown dwarfs which is difficult to disentangle due to the lack of constraints on their age such as trigonometric parallax, lithium detection and space velocity. We search for young brown dwarf candidates among a sample of 28 nearby late-M dwarfs with spectral types between M5.0 and M9.0, and we also search for debris disks around three of them. Based on theoretical models, we used the color IJI-J, the JJ-band absolute magnitude and the detection of the Li I 6708 A˚\AA doublet line as a strong constraint to estimate masses and ages of our targets. For the search of debris disks, we observed three targets at submillimeter wavelength of 850 μ\mum. We report here the first clear detections of lithium absorption in four targets and a marginal detection in one target. Our mass estimates indicate that two of them are young brown dwarfs, two are young brown dwarf candidates and one is a young very low-mass star. The closest young field brown dwarf in our sample at only \sim15 pc is an excellent benchmark for further studying physical properties of brown dwarfs in the range 100-150 Myr. We did not detect any debris disks around three late-M dwarfs, and we estimated upper limits to the dust mass of debris disks around them.Comment: 10 pages, 5 figures, accepted for publication in Astronomy and Astrophysic
    corecore