159 research outputs found
A Genetic Algorithm for Power-Aware Virtual Machine Allocation in Private Cloud
Energy efficiency has become an important measurement of scheduling algorithm
for private cloud. The challenge is trade-off between minimizing of energy
consumption and satisfying Quality of Service (QoS) (e.g. performance or
resource availability on time for reservation request). We consider resource
needs in context of a private cloud system to provide resources for
applications in teaching and researching. In which users request computing
resources for laboratory classes at start times and non-interrupted duration in
some hours in prior. Many previous works are based on migrating techniques to
move online virtual machines (VMs) from low utilization hosts and turn these
hosts off to reduce energy consumption. However, the techniques for migration
of VMs could not use in our case. In this paper, a genetic algorithm for
power-aware in scheduling of resource allocation (GAPA) has been proposed to
solve the static virtual machine allocation problem (SVMAP). Due to limited
resources (i.e. memory) for executing simulation, we created a workload that
contains a sample of one-day timetable of lab hours in our university. We
evaluate the GAPA and a baseline scheduling algorithm (BFD), which sorts list
of virtual machines in start time (i.e. earliest start time first) and using
best-fit decreasing (i.e. least increased power consumption) algorithm, for
solving the same SVMAP. As a result, the GAPA algorithm obtains total energy
consumption is lower than the baseline algorithm on simulated experimentation.Comment: 10 page
IDENTIFICATION AND QUANTITATIVE DETERMINATION OF HAZARDOUS NITROPHENOLIC COMPOUNDS IN THE EXHAUST GAS OF DIFFERENT KINDS OF DIESEL ENGINE BASED TRANSPORTATION VEHICLES IN HANOI CITY
Joint Research on Environmental Science and Technology for the Eart
Deployment of UAVs for Optimal Multihop Ad-hoc Networks Using Particle Swarm Optimization and Behavior-based Control
This study proposes an approach for establishing an optimal multihop ad-hoc
network using multiple unmanned aerial vehicles (UAVs) to provide emergency
communication in disaster areas. The approach includes two stages, one uses
particle swarm optimization (PSO) to find optimal positions to deploy UAVs, and
the other uses a behavior-based controller to navigate the UAVs to their
assigned positions without colliding with obstacles in an unknown environment.
Several constraints related to the UAVs' sensing and communication ranges have
been imposed to ensure the applicability of the proposed approach in real-world
scenarios. A number of simulation experiments with data loaded from real
environments have been conducted. The results show that our proposed approach
is not only successful in establishing multihop ad-hoc routes but also meets
the requirements for real-time deployment of UAVs.Comment: In the 11th International Conference on Control, Automation and
Information Sciences (ICCAIS 2022), Hanoi, Vietna
Silicon quantum-dots-based optical probe for fluorometric detection of Cr6+ ions
In this report, silicon quantum dots (SiQDs) with the NH2 functional group were synthesized with the hydrothermal method. The as-prepared SiQDs exhibit a strong fluorescence emission peak              at 441 nm when excited at 355 nm and are effectively quenched upon adding Cr6+ ions. Hence, SiQDs were used as an optical probe to detect Cr6+ ions in solutions. The crystal structure of SiQDs was characterized by using X-ray diffraction (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to determine the linker groups on the SiQDs surface. The fluorescence spectroscopic technique with an excitation wavelength of 355 nm was used to quantify the Cr6+ ion concentration in the solutions in the range of 0.1–1000 µM. Competition from common coexisting ions, such as K+, Na+, Al3+, Zn2+, and Pb2+, was ignorable. The test with actual samples showed good linearity for the Cr6+ concentration range of 0.1–50 µM
Gravity terrain correction for mainland territory of Vietnam
Terrain corrections for gravity data are a critical concern in rugged topography, because the magnitude of the corrections may be largely relative to the anomalies of interest. That is also important to determine the inner and outer radii beyond which the terrain effect can be neglected. Classical methods such as Lucaptrenco, Beriozkin and Prisivanco are indeed too slow with radius correction and are not extended while methods based on the Nagy’s and Kane’s are usually too approximate for the required accuracy. In order to achieve 0.1 mGal accuracy in terrain correction for mainland territory of Vietnam and reduce the computing time, the best inner and outer radii for terrain correction computation are 2 km and 70 km respectively. The results show that in nearly a half of the Vietnam territory, the terrain correction values ≥ 10 mGal, the corrections are smaller in the plain areas (less than 2 mGal) and higher in the mountainous region, in particular the correction reaches approximately 21 mGal in some locations of northern mountainous region. The complete Bouguer gravity map of mainland territory of Vietnam is reproduced based on the full terrain correction introduced in this paper
Study on structure of the Earth’s crust in Thua Thien-Hue province and adjacent areas by using gravity and magnetic data in combination
This paper presents the structural characteristics of the Earth’s crust in Thua Thien-Hue province and adjacent area based on interpretation of gravity and magnetic data in combination. Research results have shown that: The depth of crystalline basement varies complicatedly, in the range of 0–11 km. The depth of Conrad surface increases from Northeast (12 km) to Southwest (18 km) and the depth of Moho surface is 23–34 km; The density of sedimentary layer changes from 2.61 g/cm3 to 2.65 g/cm3. Meanwhile, the density of granitic layer is in the range of 2.68–2.73 g/cm3. The basaltic layer has the density value of 2.88–2.93 g/cm3 and the average density of lower layer of the Earth’s crust is about 3.30 g/cm3; The depth of second-order faults, Red River and A Luoi - Rao Quan, is through the Earth’s crust. Meanwhile, the depth of influence of third-order faults, Chay river, Dong Ha - Phu Vang, Vinh Linh, Hue - Son Tra and Tam Ky - Phuoc Son, is within the thickness of the Earth’s crust
Air pollution caused by exhaust gas from 2 cycle engine in Vietnam
Joint Research on Environmental Science and Technology for the Eart
Research on deep geological structure and forecasting of some areas with petroleum prospects in the Red river delta coastal strip according to geophysical data
The coastal areas of the Red River Delta are the transition areas from the continent to the sea and have great mineral prospects, especially petroleum prospects. In this area, a lot of topics and projects in geology and geophysics have been conducted for many different purposes such as studying the deep structure, tectonic - geological features, seismic reflection - refraction to identify petroleum traps in the Cenozoic sediments... However there are very few studies on deep structure features, using the results of processing and meta-analysis of gravity, magnetotelluric, tectonic - geological data to detect the direct and indirect relations to the formation of structures with petroleum potential. The authors have researched, tested and applied an appropriate methodology of processing and analysis, to overcome the shortfall of gravity data as well as the nonhomogeneity in details of seismic and geophysical surveys. The obtained results are semi-quantitative and qualitative characteristics of structure of deep boundary surfaces, structural characteristics of fault systems and their distribution in the study area, calculation of the average rock density of pre-Cenozoic basement... From these results, the authors established the zoning map of the areas with petroleum potential in the Red river delta coastal strip according to geophysical data
- …